ﻻ يوجد ملخص باللغة العربية
We calculate the Next-to-Leading Order (NLO) QCD corrections to Z b anti-b production in hadronic collisions including full bottom-quark mass effects. We present results for the total cross section and the invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron p anti-p collider. We perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. We find that neglecting bottom-quark mass effects overestimates the total NLO QCD cross section for Z b anti-b production at the Tevatron by about 7%, independent of the choice of the renormalization and factorization scales. Moreover, bottom-quark mass effects can impact the shape of the bottom-quark pair invariant mass distribution, in particular in the low invariant mass region.
We calculate the Next-to-Leading Order (NLO) QCD corrections to W-b-bbar production including full bottom-quark mass effects. We study the impact of NLO QCD corrections on the total cross section and invariant mass distribution of the bottom-quark je
We present NLO QCD results for W/Z gauge boson production with bottom quark pairs at the Tevatron including full bottom-quark mass effects. We study the impact of QCD corrections on both total cross-section and invariant mass distribution of the bott
We consider b-jet hadroproduction in the quasi-multi-Regge-kinematics approach based on the hypothesis of gluon and quark Reggeization in t-channel exchanges at high energies. The preliminary data on inclusive b-jet and b anti-b-dijet production take
We compute the $O(alpha_s alpha^2)$ and $O(alpha_s^2 alpha)$ contributions to the production cross section of a $Z$ boson with one $b$ jet at the Large Hadron Collider (LHC), and study their phenomenological relevance for LHC physics. The accurate pr
We present an analytic computation of the two-loop QCD corrections to $ubar{d}to W^+bbar{b}$ for an on-shell $W$-boson using the leading colour and massless bottom quark approximations. We perform an integration-by-parts reduction of the unpolarised