We present an analytic computation of the two-loop QCD corrections to $ubar{d}to W^+bbar{b}$ for an on-shell $W$-boson using the leading colour and massless bottom quark approximations. We perform an integration-by-parts reduction of the unpolarised squared matrix element using finite field reconstruction techniques and identify an independent basis of special functions that allows an analytic subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for five-particle scattering with an off-shell leg.
We compute the two-loop helicity amplitudes for the production of three photons at hadron colliders in QCD at leading-color. Using the two-loop numerical unitarity method coupled with analytic reconstruction techniques, we obtain the decomposition of
the two-loop amplitudes in terms of master integrals in analytic form. These expressions are valid to all orders in the dimensional regulator. We use them to compute the two-loop finite remainders, which are given in a form that can be efficiently evaluated across the whole physical phase space. We further package these results in a public code which assembles the helicity-summed squared two-loop remainders, whose numerical stability across phase-space is demonstrated. This is the first time that a five-point two-loop process is publicly available for immediate phenomenological applications.
We present the complete set of leading-color two-loop contributions required to obtain next-to-next-to-leading-order (NNLO) QCD corrections to three-jet production at hadron colliders. We obtain analytic expressions for a generating set of finite rem
ainders, valid in the physical region for three-jet production. The analytic continuation of the known Euclidean-region results is determined from a small set of numerical evaluations of the amplitudes. We obtain analytic expressions that are suitable for phenomenological applications and we present a C++ library for their efficient and stable numerical evaluation.
We present an analytic computation of the gluon-initiated contribution to diphoton plus jet production at hadron colliders up to two loops in QCD. We reconstruct the analytic form of the finite remainders from numerical evaluations over finite fields
including all colour contributions. Compact expressions are found using the pentagon function basis. We provide a fast and stable implementation for the colour- and helicity-summed interference between the one-loop and two-loop finite remainders in C++ as part of the NJet library.
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p
hysics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
We report on the calculation of the next-to-leading order QCD corrections to the production of W-boson pairs in association with a hard jet at the Tevatron and the LHC, which is an important source of background for Higgs and new-physics searches. Th
e corrections stabilize the leading-order prediction for the cross section considerably, in particular if a veto against the emission of a second hard jet is applied.