ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on ``Rotation Velocities and Radial Electric Field in the Plasma Edge

173   0   0.0 ( 0 )
 نشر من قبل Robert W. Johnson Jr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert W. Johnson




اسأل ChatGPT حول البحث

The calculation presented in Rotation Velocities and Radial Electric Field in the Plasma Edge by W. M. Stacey [Contrib. Plasma Phys. 46, (2006)] contains an inconsistent treatment of the electrostatic potential. Comparing the expressions for the potential associated with the radial electrostatic field with that associated with the poloidal electrostatic field reveals the inconsistency. A field-theoretic perspective implies that the electrostatic field must vanish in a model based upon the physics of a neutral, conducting fluid.



قيم البحث

اقرأ أيضاً

In this work we present the first measurements obtained by the V-band Doppler reflectometer during the second operation phase of Wendelstein 7-X to discuss the influence in the velocity shear layer and the radial electric field, E$_r$, of several pla sma parameters such as magnetic configuration, rotational transform or degree of detachment. In the first place, we carry out a systematic characterization of the turbulence rotation velocity profile in order to describe the influence of density and heating power on E$_r$ under the four most frequent magnetic configurations. The $|$E$_r|$ value in the edge is found to increase with configurations featuring higher $iota$, although this does not apply for the high mirror configuration, KJM. As well, the E$_r$ value in the SOL and the velocity shear near the separatrix are found to display a clear dependence on heating power and density for all configurations. For a number of relevant cases, these results are assessed by comparing them to neoclassical predictions obtained from the codes DKES and KNOSOS, finding generally good agreement with experimental results. Finally, the evolution of E$_r$ at the edge is evaluated throughout the island-divertor detachment regime achieved for the first time in the 2018 campaign. After detachment, $|$E$_r|$ is reduced both at the SOL and edge, and the plasma column shrinks, with the shear layer seemingly moving radially inwards from the separatrix.
In tokamaks, internal transport barriers, produced by modifications of the plasma current profile, reduce particle transport and improve plasma confinement. The triggering of the internal transport barriers and their dependence on the plasma profiles is a key nonlinear dynamics problem still under investigation. We consider the onset of shearless invariant curves inside the plasma which create internal transport barriers. A non-integrable drift-kinetic model is used to describe particle transport driven by drift waves and to investigate these shearless barriers onset in tokamaks. We show that for some currently observed plasma profiles shearless particle transport barriers can be triggered by properly modifying the electric field profile and the influence of non-resonant modes in the barriers onset. In particular, we show that a broken barrier can be restored by enhancing non-resonant modes.
In a rotating magnetized plasma cylinder with shear, cross-field current can arise from inertial mechanisms and from the cross-field viscosity. Considering these mechanisms, it is possible to calculate the irreducible radial current draw in a cylindr ical geometry as a function of the rotation frequency. The resulting expressions raise novel possibilities for tailoring the electric field profile by controlling the density and temperature profiles of a plasma.
In the present work we report recent radial electric field measurements carried out with the Doppler reflectometry system in the TJ-II stellarator. The study focuses on the fact that, under some conditions, the radial electric field measured at diffe rent points over the same flux surface shows significantly different values. A numerical analysis is carried out considering the contribution arising from the radial dependence of $Phi_1$ as a possible correction term to the total radial electric field. Here $Phi_1$ is the neoclassical electrostatic potential variation over the surface. The comparison shows good agreement in some aspects, like the conditions under which this correction is large (electron-root conditions) or negligible (ion-root conditions). But it disagrees in others like the sign of the correction. The results are discussed together with the underlying reasons of this partial disagreement. In addition, motivated by the recent installation of the dual Doppler reflectometry system in Wendelstein 7-X (W7-X), $Phi_1$ estimations for W7-X are revisited considering Core-Electron-Root-Plasma (CERC) plasmas from its first experimental campaign. The simulations show larger values of $Phi_1$ under electron-root conditions than under ion root ones. The contribution from the kinetic electron response is shown to become important at some radii. All this results in a potential variation size noticeably larger than estimated in our previous work in W7-X cite{Regana_nf_57_056004_2017} for other plasma parameters and another configuration.
The local stability of ion-temperature gradient driven mode (ITG) in the presence of a given radial electric field is investigated using gyrokinetic theory and ballooning mode formalism with toroidal effect accounted for. It is found that, zero frequ ency radial electric field induced poloidal rotation can significantly stabilize ITG, while the associated density perturbation has little effect on ITG stability due to the modification of finite-orbit-width effect. However, the parallel mode structure is slightly affected due to the evenly symmetric density modulation of ZFZF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا