ﻻ يوجد ملخص باللغة العربية
Massive early-type galaxies are observed to lie on the Mass Plane (MP), a two-dimensional manifold in the space of effective radius R_e, projected mass M_p (measured via strong gravitational lensing) and projected velocity dispersion sigma within R_e/2. The MP is less `tilted than the Fundamental Plane, and the two have comparable associated scatter. This means that c_e2=2*G*M_p/(R_e*sigma^2) is a nearly universal constant in the range sigma=175-400 km/s. This finding can be used to constrain the mass distribution and internal dynamics of early-type galaxies. We find that a relatively wide class of spherical galaxy models has values of c_e2 in the observed range, because c_e2 is not very strongly sensitive to the mass distribution and orbital anisotropy. If the total mass distribution is isothermal, a broad range of stellar luminosity profile and anisotropy is consistent with the observations, while NFW dark-matter halos require more fine tuning of the stellar mass fraction, luminosity profile and anisotropy. If future data can cover a broader range of masses, the MP could be seen to be tilted and the value of any such tilt would provide a discriminant between models for the total mass-density profile of the galaxies. [Abridged]
We are studying the mass distribution in a sample of 50 early type spiral galaxies, with morphological type betweens S0 and Sab and absolute magnitudes M_B between -18 and -22; they form the massive and high-surface brightness extreme of the disk gal
From a sample of ~50000 early-type galaxies from the SDSS, we measured the traditional Fundamental Plane in four bands. We then replaced luminosity with stellar mass, and measured the stellar mass FP. The FP steepens slightly as one moves from shorte
Galaxy mergers are instrumental in dictating the final mass, structure, stellar populations, and kinematics of galaxies. Cosmological galaxy simulations indicate that the most massive galaxies at z=0 are dominated by high fractions of `ex-situ stars,
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the galaxies orbital anisotropies and radial mass profiles. We demonstrate that compressing a galaxys light distribution along the line of sight produces approxima
We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos,