ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass profiles and anisotropies of early-type galaxies

60   0   0.0 ( 0 )
 نشر من قبل John Magorrian
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the problem of using stellar kinematics of early-type galaxies to constrain the galaxies orbital anisotropies and radial mass profiles. We demonstrate that compressing a galaxys light distribution along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disk. Such face-on stellar disks could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, NGC 3379 and NGC 6703. In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully-Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag (I-band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.



قيم البحث

اقرأ أيضاً

We have analyzed the parallelism between the properties of galaxy clusters and early-type galaxies (ETGs) by looking at the similarity between their light profiles. We find that the equivalent luminosity profiles of all these systems in the vfilt ban d, once normalized to the effective radius re and shifted in surface brightness, can be fitted by the Sersics law Sers and superposed with a small scatter ($le0.3$ mag). By grouping objects in different classes of luminosity, the average profile of each class slightly deviates from the other only in the inner and outer regions (outside $0.1leq r/R_eleq 3$), but the range of values of $n$ remains ample for the members of each class, indicating that objects with similar luminosity have quite different shapes. The Illustris simulation reproduces quite well the luminosity profiles of ETGs, with the exception of in the inner and outer regions where feedback from supernovae and active galactic nuclei, wet and dry mergers, are at work. The total mass and luminosity of galaxy clusters as well as their light profiles are not well reproduced. By exploiting simulations we have followed the variation of the effective half-light and half-mass radius of ETGs up to $z=0.8$, noting that progenitors are not necessarily smaller in size than current objects. We have also analyzed the projected dark+baryonic and dark-only mass profiles discovering that after a normalization to the half-mass radius, they can be well superposed and fitted by the Sersics law.
Using the data products of the Chandra Galaxy Atlas (Kim et al. 2019a), we have investigated the radial profiles of the hot gas temperature in 60 early type galaxies. Considering the characteristic temperature and radius of the peak, dip, and break ( when scaled by the gas temperature and virial radius of each galaxy), we propose a universal temperature profile of the hot halo in ETGs. In this scheme, the hot gas temperature peaks at RMAX = 35 +/- 25 kpc (or ~0.04 RVIR) and declines both inward and outward. The temperature dips (or breaks) at RMIN (or RBREAK) = 3 - 5 kpc (or ~0.006 RVIR). The mean slope between RMIN (RBREAK) and RMAX is 0.3 +/- 0.1. Allowing for selection effects and observational limits, we find that the universal temperature profile can describe the temperature profiles of 72% (possibly up to 82%) of our ETG sample. The remaining ETGs (18%) with irregular or monotonically declining profiles do not fit the universal profile and require another explanation. The temperature gradient inside RMIN (RBREAK) varies widely, indicating different degrees of additional heating at small radii. Investigating the nature of the hot core (HC with a negative gradient inside RMIN), we find that HC is most clearly visible in small galaxies. Searching for potential clues associated with stellar, AGN feedback, and gravitational heating, we find that HC may be related to recent star formation. But we see no clear evidence that AGN feedback and gravitational heating play any significant role for HC.
The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the bar yonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS$^{3D}$ and SLUGGS data, which was the first homogenous study of this kind, reaching ~4 $R_e$, where DM begins to dominate the total mass budget. We find the early-type galaxies to follow an MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass density profiles inferred from galaxy dynamics show consistency with those expected from their stellar content assuming MOND, some profiles of individual galaxies show discrepancies.
194 - T.Treu 2009
We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos, a combination of lensing, dynamical, and stellar population synthesis models is used to disentangle the stellar and dark matter contribution for each lens. We define an IMF mismatch parameter alpha=M*(L+D)/M*(SPS) as the ratio of stellar mass inferred by a joint lensing and dynamical models (M*(L+D)) to the current stellar mass inferred from stellar populations synthesis models (M*(SPS)). We find that a Salpeter IMF provides stellar masses in agreement with those inferred by lensing and dynamical models (<log alpha>=0.00+-0.03+-0.02), while a Chabrier IMF underestimates them (<log alpha>=0.25+-0.03+-0.02). A tentative trend is found, in the sense that alpha appears to increase with galaxy velocity dispersion. Taken at face value, this result would imply a non universal IMF, perhaps dependent on metallicity, age, or abundance ratios of the stellar populations. Alternatively, the observed trend may imply non-universal dark matter halos with inner density slope increasing with velocity dispersion. While the degeneracy between the two interpretations cannot be broken without additional information, the data imply that massive early-type galaxies cannot have both a universal IMF and universal dark matter halos.
We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region and the nature of Freeman Type I and II profiles, their origins, and their possible relation to disk truncations. This paper discusses the data and their reduction, outlines our classification system, and presents $R$-band profiles and classifications for all galaxies in the sample. The profiles are derived from a variety of different sources, including the Sloan Digital Sky Survey (Data Release 5). For about half of the galaxies, we have profiles derived from more than one telescope; this allows us to check the stability and repeatability of our profile extraction and classification. The vast majority of the profiles are reliable down to levels of mu_R ~ 27 mag arcsec^-2; in exceptional cases, we can trace profiles down to mu_R > 28. We can typically follow disk profiles out to at least 1.5 times the traditional optical radius R_25; for some galaxies, we find light extending to ~ 3 R_25. We classify the profiles into three main groups: Type I (single-exponential), Type II (down-bending), and Type III (up-bending). The frequencies of these types are approximately 27%, 42%, and 24%, respectively, plus another 6% which are combinations of Types II and III. We further classify Type II profiles by where the break falls in relation to the bar length, and in terms of the postulated mechanisms for breaks at large radii (classical trunction of star formation versus the influence of the Outer Lindblad Resonance of the bar). We also classify the Type III profiles by the probable morphology of the outer light (disk or spheroid). Illustrations are given for all cases. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا