ﻻ يوجد ملخص باللغة العربية
In this paper, we show that an atom interferometer inertial sensor, when associated to the auxiliary measurement of external vibrations, can be operated beyond its linear range and still keep a high acceleration sensitivity. We propose and compare two measurement procedures (fringe fitting and nonlinear lock) that can be used to extract the mean phase of the interferometer when the interferometer phase fluctuations exceed $2pi$. Despite operating in the urban environment of inner Paris without any vibration isolation, the use of a low noise seismometer for the measurement of ground vibrations allows our atom gravimeter to reach at night a sensitivity as good as $5.5times10^{-8}$g at 1 s. Robustness of the measurement to large vibration noise is also demonstrated by the ability of our gravimeter to operate during an earthquake with excellent sensitivity. Our high repetition rate allows for recovering the true low frequency seismic vibrations, ensuring proper averaging. Such techniques open new perspectives for applications in other fields, such as navigation and geophysics.
We study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact
We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {mu}m
Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light based quantum systems. Here, we use the optical
We show that a dynamically evolving two-mode Bose-Einstein condensate (TBEC) with an adiabatic, time-varying Raman coupling maps exactly onto a nonlinear Ramsey interferometer that includes a nonlinear medium. Assuming a realistic quantum state for t
We report on our progress in the construction of a continuous matter-wave interferometer for inertial sensing via the non-destructive observation of Bloch oscillations. At the present stage of the experiment, around $10^5$ strontium-88 atoms are cool