ترغب بنشر مسار تعليمي؟ اضغط هنا

Matter-wave beam splitter on an atom chip for a portable atom-interferometer

178   0   0.0 ( 0 )
 نشر من قبل Jung Bog Kim
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {mu}m to 57 {mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.



قيم البحث

اقرأ أيضاً

500 - S. J. Kim , H. Yu , S. T. Gang 2015
We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.
Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 microns, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving.
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retr o-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.
160 - Bo Yan , Feng Cheng , Min Ke 2008
We report an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip based Z-wire current and a homogeneous bias magnetic field create a tight magnetic trap, which allows for a fast production of BEC. After an 4.17s forced rad io frequency evaporative cooling, a condensate with about 3000 atoms appears. And the transition temperature is about 300nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.
Detecting single atoms (qubits) is a key requirement for implementing quantum information processing on an atom chip. The detector should ideally be integrated on the chip. Here we present and compare different methods capable of detecting neutral at oms on an atom chip. After a short introduction to fluorescence and absorption detection we discuss cavity enhanced detection of single atoms. In particular we concentrate on optical fiber based detectors such as fiber cavities and tapered fiber dipole traps. We discuss the various constraints in building such detectors in detail along with the current implementations on atom chips. Results from experimental tests of fiber integration are also described. In addition we present a pilot experiment for atom detection using a concentric cavity to verify the required scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا