ﻻ يوجد ملخص باللغة العربية
A theory is developed for interband tunneling in semiconducting carbon nanotube and graphene nanoribbon p-n junction diodes. Characteristic length and energy scales that dictate the tunneling probabilities and currents are evaluated. By comparing the Zener tunneling processes in these structures to traditional group IV and III-V semiconductors, it is proved that for identical bandgaps, carbon based 1D structures have higher tunneling probabilities. The high tunneling current magnitudes for 1D carbon structures suggest the distinct feasibility of high-performance tunneling-based field-effect transistors.
Graphene nanoribbons (GNRs) based T junctions were designed and studied in this paper. These junctions were made up of shoulders (zigzag GNRs) joined with stems (armchair GNRs). We demonstrated the intrinsic transport properties and effective boron (
Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths sma
We study the zero temperature conductance and magnetoconductance of ballistic textit{p-n} junctions in Weyl semimetals. Electron transport is mediated by Klein tunneling between textit{n}- and textit{p}- regions. The chiral anomaly that is realized i
Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical pr
We study a model of a $p$-$n$ junction in single-layer graphene in the presence of a perpendicular magnetic field and spin-orbit interactions. By solving the relevant quantum-mechanical problem for a potential step, we determine the exact spectrum of