ﻻ يوجد ملخص باللغة العربية
Graphene nanoribbons (GNRs) based T junctions were designed and studied in this paper. These junctions were made up of shoulders (zigzag GNRs) joined with stems (armchair GNRs). We demonstrated the intrinsic transport properties and effective boron (or nitrogen) doping of the junctions by using first principles quantum transport simulation. Several interesting results were found: i) The I-V characteristics of the pure-carbon T junctions were shown to obey Ohm law and the electrical conductivity of the junction depends on the height of the stem sensitively. ii) boron (or nitrogen) doping on the stems doesnt change the Ohm law of the T junctions, but the result is opposite when doping process occurs at the shoulders. This feature could make such quasi-2D T junction a possible candidate for nanoscale junction devices in a 2D network of nanoelectronic devices in which conducting pathways can be controlled.
A theory is developed for interband tunneling in semiconducting carbon nanotube and graphene nanoribbon p-n junction diodes. Characteristic length and energy scales that dictate the tunneling probabilities and currents are evaluated. By comparing the
Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical pr
Nearly free electron (NFE) state is an important kind of unoccupied state in low dimensional systems. Although it is intensively studied, a clear picture on its physical origin and its response behavior to external perturbations is still not availabl
We have elaborately studied the electronic structure of 555-777 divacancy (DV) defected armchair edged graphene nanoribbon (AGNR) and transport properties of AGNR based two-terminal device constructed with one defected electrode and one N doped elect
We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi