ﻻ يوجد ملخص باللغة العربية
Effects of the growth velocity on the crystal growth behavior of Bi_2Sr_2Ca_1Cu_2O_x (Bi-2212) have been studied by floating zone technique. The results show that a necessary condition for obtaining large single crystals along the c-axis is that the solid-liquid interface of a growing rod maintains a stable planar growth front. The planar liquid-solid growth interface tends to break down into a cellular interface, while the growth velocity is higher than 0.25 mm/h. Single crystals of up to 50x7.2x7 mm3 along the a-, b- and caxes have been cut in a 7.2 mm diameter rod with optimum growth conditions. Tconset is 91 K measured by magnetic properties measurement system (MPMS) for as-grown crystals. Optical polarization microscope and neutron diffraction show that the quality of the single crystals is good.
Single crystals of PrNiO3 were grown under an oxygen pressure of 295 bar using a unique high-pressure optical-image floating zone furnace. The crystals, with volume in excess of 1 mm3, were characterized structurally using single crystal and powder X
We report the growth of large single-crystals of Cu2MnAl, a ferromagnetic Heusler compound suitable for polarizing neutron monochromators, by means of optical floating zone under ultra-high vacuum compatible conditions. Unlike Bridgman or Czochralsky
We report the optimized conditions for growing the high quality single crystals of candidate quantum spin-ice Pr2Hf2O7 using the optical floating-zone method. Large single crystals of Pr2Hf2O7 have been grown under different growth conditions using a
We have developed the laser-diode-heated floating zone (LDFZ) method, in order to improve the broad and inhomogeneous light focusing in the conventional lamp-heated floating zone method, which often causes difficulties in the crystal growth especiall
Pyrochlore $rm Pr^{3+}_{2+x}Zr^{4+}_{2-x}O_{7-x/2}$ samples in the form of both powders $(-0.02 le x le 0.02)$ and bulk single crystals have been studied to elucidate the dependence of their magnetic, compositional and structural properties on synthe