ﻻ يوجد ملخص باللغة العربية
We present observations made with the 10m Heinrich Hertz Sub-Millimeter Telescope of HCN (3-2) emission from a sample of 30 nearby galaxies ranging in infrared luminosity from 10^10 - 10^12.5 L_sun and HCN (3-2) luminosity from 10^6 - 10^9 K km s^-1 pc^2. We examine the correlation between the infrared luminosity and HCN (3-2) luminosity and find that the best fit linear regression has a slope (in log-log space) of 0.74+/-0.12. Including recently published data from Gracia-Carpio et al. tightens the constraints on the best-fit slope to 0.79+/-0.09. This slope below unity suggests that the HCN (3-2) molecular line luminosity is not linearly tracing the amount of dense gas. Our results are consistent with predictions from recent theoretical models that find slopes below unity when the line luminosity depends upon the average gas density with a power-law index greater than a Kennicutt-Schmidt index of 1.5.
We investigate the relationship between the star formation rate (SFR) and dense molecular gas mass in the nuclei of galaxies. To do this, we utilize the observed 850 micron luminosity as a proxy for the infrared luminosity and SFR, and correlate this
We model the star formation relation of molecular clumps in dependence of their dense-gas mass when their volume density profile is that of an isothermal sphere, i.e. $rho_{clump}(r) propto r^{-2}$. Dense gas is defined as gas whose volume density is
It is well-established that a gas density gradient inside molecular clouds and clumps raises their star formation rate compared to what they would experience from a gas reservoir of uniform density. This effect should be observed in the relation betw
It has been recently argued that the HCN J=1--0 line emission may not be an unbiased tracer of dense molecular gas ($rm nga 10^4 cm^{-3}$) in Luminous Infrared Galaxies (LIRGs: $rm L_{FIR}> 10^{11} L_{odot}$) and HCO$^+$ J=1--0 may constitute a bette
We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18