ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting Angular Diameter Distance and Expansion Rate of the Universe from Two-dimensional Galaxy Power Spectrum at High Redshifts: Baryon Acoustic Oscillation Fitting versus Full Modeling

30   0   0.0 ( 0 )
 نشر من قبل Masatoshi Shoji
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for extracting the angular diameter distances, $D_A$, and the expansion rates, $H$, of the universe from the {it two-dimensional} Baryon Acoustic Oscillations (BAO) in the galaxy power spectrum. Our method builds upon the existing algorithm called the fit-and-extract (FITEX) method, which allows one to extract only $D_A^2/H$ from a spherically averaged one-dimensional power spectrum. We develop the FITEX-2d method, an extension of the FITEX method, to include the two-dimensional information, which allows us to extract $D_A$ and $H$ simultaneously. We test the FITEX-2d method using the Millennium Simulation as well as simplified Monte Carlo simulations with a bigger volume. The BAOs, however, contain only a limited amount of information. We show that the full modeling, including the overall shape of the power spectrum, yields much better determinations of $D_A$ and $H$, hence the dark energy equation of state parameters such as $w_0$ and $w_a$, than the BAO-only analysis by more than a factor of two, provided that non-linear effects are under control.

قيم البحث

اقرأ أيضاً

Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data r elease (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z = [2.20,2.25] produce the angular BAO scale theta_BAO = 1.77 +- 0.31 deg with a statistical significance of 2.12 sigma (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the LCDM concordance model. Additionally, we show that the BAO signal is robust -although with less statistical significance- under diverse bin-size choices and under small displacements of the quasars angular coordinates. Finally, we also performed cosmological parameter analyses comparing the theta_BAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters Omega_M, w_0 and w_a are in excellent agreement with the LCDM concordance model.
We use three different data sets, specifically $H(z)$ measurements from cosmic chronometers, the HII-galaxy Hubble diagram, and reconstructed quasar-core angular-size measurements, to perform a joint analysis of three flat cosmological models: the $R _{rm h}=ct$ Universe, $Lambda$CDM, and $w$CDM. For $R_{rm h}=ct$, the 1$sigma$ best-fit value of the Hubble constant $H_0$ is $62.336pm1.464$ $mathrm{km s^{-1} Mpc^{-1}}$, which matches previous measurements ($sim 63$ $mathrm{km s^{-1} Mpc^{-1}}$) based on best fits to individual data sets. For $Lambda$CDM, our inferred value of the Hubble constant, $H_0=67.013pm2.578$ $mathrm{km s^{-1} Mpc^{-1}}$, is more consistent with the ${it Planck}$ optimization than the locally measured value using $mbox{Cepheid}$ variables, and the matter density $Omega_{rm m}=0.347pm0.049$ similarly coincides with its ${it Planck}$ value to within 1$sigma$. For $w$CDM, the optimized parameters are $H_0=64.718pm3.088$ $mathrm{km s^{-1} Mpc^{-1}}$, $Omega_{rm m}=0.247pm0.108$ and $w=-0.693pm0.276$, also consistent with ${it Planck}$. A direct comparison of these three models using the Bayesian Information Criterion shows that the $R_{rm h}=ct$ universe is favored by the joint analysis with a likelihood of $sim 97%$ versus $lesssim 3%$ for the other two cosmologies.
We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 16 luminous red galaxy sample (DR16 eBOSS LRG) in combination with the high redshift tail of the Sloan Digital Sky Survey III B aryon Oscillation Spectroscopic Survey Data Release 12 (DR12 BOSS CMASS). We measure the redshift space distortions (RSD) and also extract the longitudinal and transverse baryonic acoustic oscillation (BAO) scale from the anisotropic power spectrum signal inferred from 377,458 galaxies between redshifts 0.6 and 1.0, with effective redshift of $z_{rm eff}=0.698$ and effective comoving volume of $2.72,{rm Gpc}^3$. After applying reconstruction we measure the BAO scale and infer $D_H(z_{rm eff})/r_{rm drag} = 19.30pm 0.56$ and $D_M(z_{rm eff})/r_{rm drag} =17.86 pm 0.37$. When we perform a redshift space distortions analysis on the pre-reconstructed catalogue on the monopole, quadrupole and hexadecapole we find, $D_H(z_{rm eff})/r_{rm drag} = 20.18pm 0.78$, $D_M(z_{rm eff})/r_{rm drag} =17.49 pm 0.52$ and $fsigma_8(z_{rm eff})=0.454pm0.046$. We combine both sets of results along with the measurements in configuration space of cite{LRG_corr} and report the following consensus values: $D_H(z_{rm eff})/r_{rm drag} = 19.77pm 0.47$, $D_M(z_{rm eff})/r_{rm drag} = 17.65pm 0.30$ and $fsigma_8(z_{rm eff})=0.473pm 0.044$, which are in full agreement with the standard $Lambda$CDM and GR predictions. These results represent the most precise measurements within the redshift range $0.6leq z leq 1.0$ and are the culmination of more than 8 years of SDSS observations.
Extraction of the Baryon Acoustic Oscillations (BAO) to percent level accuracy is challenging and demands an understanding of many potential systematic to an accuracy well below 1 per cent, in order ensure that they do not combine significantly when compared to statistical error of the BAO measurement. Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) SDSS Data Release Eleven (DR11) reaches a distance measurement with $sim 1%$ statistical error and this prompts an extensive search for all possible sub-percent level systematic errors which could be safely ignored previously. In this paper, we analyze the potential systematics in BAO fitting methodology using mocks and data from BOSS DR10 and DR11. We demonstrate the robustness of the fiducial multipole fitting methodology to be at $0.1%-0.2%$ level with a wide range of tests in mock galaxy catalogs pre- and post-reconstruction. We also find the DR10 and DR11 data from BOSS to be robust against changes in methodology at similar level. This systematic error budget is incorporated into the the error budget of Baryon Oscillation Spectroscopic Survey (BOSS) DR10 and DR11 BAO measurements. Of the wide range of changes we have investigated, we find that when fitting pre-reconstructed data or mocks, the following changes have the largest effect on the best fit values of distance measurements both parallel and perpendicular to the line of sight: (a) Changes in non-linear correlation function template; (b) Changes in fitting range of the correlation function; (c) Changes to the non-linear damping model parameters. The priors applied do not matter in the estimates of the fitted errors as long as we restrict ourselves to physically meaningful fitting regions.[abridged]
A photometric redshift sample of Luminous Red Galaxies (hereafter LRGs) obtained from The DECam Legacy Survey (DECaLS) is analysed to probe cosmic distances by exploiting the wedge approach of the two-point correlation function. Although the cosmolog ical information is highly contaminated by the uncertainties existing in the photometric redshifts from the galaxy map, an angular diameter distance can be probed at the perpendicular configuration in which the measured correlation function is minimally contaminated. An ensemble of wedged correlation functions selected up to a given threshold based on having the least contamination was studied in the previous work (arXiv:1903.09651v2 [astro-ph.CO]) using simulations, and the extracted cosmological information was unbiased within this threshold. We apply the same methodology for analysing the LRG sample from DECaLS which will provide the optical imaging for targeting two-thirds of the DESI footprint and measure the angular diameter distances at $z=0.69$ and $z=0.87$ to be $D_{A}(0.697)=(1499 pm 77,mathrm{Mpc})(r_{d}/r_{d,fid})$ and $D_{A}(0.874)=(1680 pm 109,mathrm{Mpc})(r_{d}/r_{d,fid})$ with a fractional error of 5.14% and 6.48% respectively. We obtain a value of $H_{0}=67.59pm5.52$ km/s/Mpc which supports the $H_0$ measured by all other BAO results and is consistent with $Lambda$CDM model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا