ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular momentum transport and element mixing in the stellar interior I. Application to the rotating Sun

303   0   0.0 ( 0 )
 نشر من قبل Wuming Yang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of this work was to obtain diffusion coefficient for the magnetic angular momentum transport and material transport in a rotating solar model. We assumed that the transport of both angular momentum and chemical elements caused by magnetic fields could be treated as a diffusion process. The diffusion coefficient depends on the stellar radius, angular velocity, and the configuration of magnetic fields. By using of this coefficient, it is found that our model becomes more consistent with the helioseismic results of total angular momentum, angular momentum density, and the rotation rate in a radiative region than the one without magnetic fields. Not only can the magnetic fields redistribute angular momentum efficiently, but they can also strengthen the coupling between the radiative and convective zones. As a result, the sharp gradient of the rotation rate is reduced at the bottom of the convective zone. The thickness of the layer of sharp radial change in the rotation rate is about 0.036 $R_{odot}$ in our model. Furthermore, the difference of the sound-speed square between the seismic Sun and the model is improved by mixing the material that is associated with angular momentum transport.

قيم البحث

اقرأ أيضاً

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated sub-micrometer superfluid 4He droplets is studied by ultr afast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.
Inclusion of time-odd components into the wave function is important for reliable description of rotational motion by the angular-momentum-projection method; the cranking procedure with infinitesimal rotational frequency is an efficient way to realiz e it. In the present work we investigate the effect of this infinitesimal cranking for triaxially deformed nucleus, where there are three independent cranking axes. It is found that the effects of cranking about three axes on the triaxial energy spectrum are quite different and inclusion of all of them considerably modify the resultant spectrum from the one obtained without cranking. Employing the Gogny D1S force as an effective interaction, we apply the method to the calculation of the multiple gamma vibrational bands in $^{164}$Er as a typical example, where the angular-momentum-projected configuration-mixing with respect to the triaxial shape degree of freedom is performed. With this method, both the $K=0$ and $K=4$ two-phonon gamma vibrational bands are obtained with considerable anharmonicity. Reasonably good agreement, though not perfect, is obtained for both the spectrum and transition probabilities with rather small average triaxial deformation $gammaapprox 9^circ$ for the ground state rotational band. The relation to the wobbling motion at high-spin states is also briefly discussed.
We demonstrate the spin to orbital angular momentum transfer in the nonlinear mixing of structured light beams. A vector vortex is coupled to a circularly polarized Gaussian beam in noncollinear second harmonic generation under type-II phase match. T he second harmonic beam inherits the Hermite-Gaussian components of the vector vortex, however, the relative phase between them is determined by the polarization state of the Gaussian beam. This effect creates an interesting crosstalk between spin and orbital degrees of freedom, allowing the angular momentum transfer between them. Our experimental results match the theoretical predictions for the nonlinear optical response.
In this pilot study, we examine molecular jets from the embedded Class I sources, HH 26 and HH 72, to search, for the first time, for kinematic signatures of jet rotation from young embedded sources.High resolution long-slit spectroscopy of the H2 1- 0 S(1) transition was obtained using VLT/ISAAC, position-velocity (PV) diagrams constructed and intensity-weighted radial velocities transverse to the jet flow measured. Mean intensity-weighted velocities vary between vLSR ~ -90 and -65 km/s for HH 26, and -60 and -10 km/s for HH 72; maxima occur close to the intensity peak and decrease toward the jet borders. Velocity dispersions are ~ 45 and ~ 80 km/s for HH 26 and HH 72, respectively, with gas motions as fast as -100 km/s present. Asymmetric PV diagrams are seen for both objects which a simple empirical model of a cylindrical jet section shows could in principle be reproduced by jet rotation alone. Assuming magneto-centrifugal launching, the observed HH 26 flow may originate at a disk radius of 2-4 AU from the star with the toroidal component of the magnetic field dominant at the observed location, in agreement with magnetic collimation models. We estimate that the kinetic angular momentum transported by the HH 26 jet is ~ 2E5 M_sun/yr AU km/s. This value (a lower limit to the total angular momentum transported by the flow) already amounts to 70% of the angular momentum that has to be extracted from the disk for the accretion to proceed at the observed rate. The results of this pilot study suggest that jet rotation may also be present at early evolutionary phases and supports the hypothesis that they carry away excess angular momentum, thus allowing the central protostar to increase its mass.
To better understand the observed distributions of rotation rate and magnetic activity of sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar-wind torque on Rossby number. The torque also contains a n empirically-derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously, why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the upper envelope of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the lower envelope, corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا