ترغب بنشر مسار تعليمي؟ اضغط هنا

Breakdown of Landau Theory in Overdoped Cuprates near the Onset of Superconductivity

100   0   0.0 ( 0 )
 نشر من قبل Matthias Ossadnik
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the functional renormalization group to analyze the temperature dependence of the quasi-particle scattering rates in the two-dimensional Hubbard model below half-filling. Using a band structure appropriate to overdoped Tl2Ba2CuO(6+x) we find a strongly angle dependent term linearly dependent on temperature which derives from an increasing scattering vertex as the energy scale is lowered. This behavior agrees with recent experiments and confirms earlier conclusions on the origin of the breakdown of the Landau Fermi liquid near the onset of superconductivity.



قيم البحث

اقرأ أيضاً

In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and h ow the high energy scale physics associated with Mott-like excitations (|E-E$_{F}$|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Bi$_2$Sr$_2$Ca$_{0.92}$Y$_{0.08}$Cu$_2$O$_{8+{delta}}$ over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (T$_c$).
We describe the phase diagram of a 2+1 dimensional SU(2) gauge theory of fluctuating incommensurate spin density waves for the hole-doped cuprates. Our primary assumption is that all low energy fermionic excitations are gauge neutral and electron-lik e, while the spin density wave order is fractionalized into Higgs fields transforming as adjoints of the gauge SU(2). The confining phase of the gauge theory is a conventional Fermi liquid with a large Fermi surface (and its associated $d$-wave superconductor). There is a quantum phase transition to a Higgs phase describing the `pseudogap at lower doping. Depending upon the quartic terms in the Higgs potential, the Higgs phase exhibits one or more of charge density wave, Ising-nematic, time-reversal odd scalar spin chirality, and $mathbb{Z}_2$ topological orders. It is notable that the emergent broken symmetries in our theory of fluctuating spin density waves co-incide with those observed in diverse experiments. For the electron-doped cuprates, the spin density wave fluctuations are at wavevector $(pi,pi)$, and then the corresponding SU(2) gauge theory only has a crossover between the confining and Higgs regimes, with an exponentially large confinement scale deep in the Higgs regime. On the Higgs side, for both the electron- and hole-doped cases, and at scales shorter than the confinement scale (which can be infinite when $mathbb{Z}_2$ topological order is present), the electron spectral function has a `fractionalized Fermi liquid (FL*) form with small Fermi surfaces. We also describe the deconfined quantum criticality of the Higgs transition in the limit of a large number of Higgs flavors, and perturbatively discuss its coupling to fermionic excitations.
367 - J. Ayres , M. Berben , M. Culo 2020
Strange metals possess highly unconventional transport characteristics, such as a linear-in-temperature ($T$) resistivity, an inverse Hall angle that varies as $T^2$ and a linear-in-field ($H$) magnetoresistance. Identifying the origin of these colle ctive anomalies has proved profoundly challenging, even in materials such as the hole-doped cuprates that possess a simple band structure. The prevailing dogma is that strange metallicity in the cuprates is tied to a quantum critical point at a doping $p*$ inside the superconducting dome. Here, we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond $p*$. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high $H/T$ ratios. Moreover, its magnitude is found to be much larger than predicted by conventional theory and insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange metal phase hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant `Planckian dissipators.
The thermoelectric power S(T) of single-layer Bi2Sr2CuO6+d is studied as a function of oxygen doping in the strongly overdoped region of the phase diagram (T, d). As other physical properties in this region, diffusion thermopower Sdiff(T) also shows an important deviation from conventional Fermi liquid behaviour. This departure from T-linear S(T) dependence together with the results of susceptibility on the same samples suggest that the origin of the observed non-metallic behaviour is the existence of a singularity in the density of states near the Fermi level. The doping and temperature dependence of themopower is compared with a tight-binding band model.
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration an d its physical origin. First one is associated with the pseudogap formation for p<p*, with p~0.2. Another one relies on the Hall effect measurements and suggests that the critical point and the quantum phase transition (QPT) take place at optimal doping, p_{opt}~0.16. Here we have performed a precise density of states calculation and found that there are two QPTs and the corresponding critical concentrations associated with the change of the Fermi surface topology upon doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا