ﻻ يوجد ملخص باللغة العربية
We study the existence of a solution for a one-dimensional generalized backward stochastic differential equation with two reflecting barriers (GRBSDE for short) under assumptions on the input data which are weaker than that on the current literature. In particular, we construct a maximal solution for such a GRBSDE when the terminal condition xi is only F_T-measurable and the driver f is continuous with general growth with respect to the variable y and stochastic quadratic growth with respect to the variable z without assuming any P-integrability conditions. The work is suggested by the interest the results might have in Dynkin game problem and American game option.
We study the problem of existence of solutions for generalized backward stochastic differential equation with two reflecting barriers (GRBSDE for short) under weaker assumptions on the data. Roughly speaking we show the existence of a maximal solutio
The aim of this paper is to characterize the Snell envelope of a given P-measurable process l as the minimal solution of some backward stochastic differential equation with lower general reflecting barriers and to prove that this minimal solution exists.
In this paper, we study the solvability of anticipated backward stochastic differential equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional case. In these BSDEs, the generator, which is of quadratic growt
We investigate rough differential equations with a time-dependent reflecting lower barrier, where both the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow for Young integration, we provide existence, uni
We prove the existence of maximal (and minimal) solution for one-dimensional generalized doubly reflected backward stochastic differential equation (RBSDE for short) with irregular barriers and stochastic quadratic growth, for which the solution $Y$