ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly Reflected BSDEs With Stochastic Quadratic Growth: Around The Predictable Obstacles

101   0   0.0 ( 0 )
 نشر من قبل El Hassan Essaky
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the existence of maximal (and minimal) solution for one-dimensional generalized doubly reflected backward stochastic differential equation (RBSDE for short) with irregular barriers and stochastic quadratic growth, for which the solution $Y$ has to remain between two rcll barriers $L$ and $U$ on $[0; T[$, and its left limit $Y_-$ has to stay respectively above and below two predictable barriers $l$ and $u$ on $]0; T]$. This is done without assuming any $P$-integrability conditions and under weaker assumptions on the input data. In particular, we construct a maximal solution for such a RBSDE when the terminal condition $xi$ is only ${cal F}_T-$measurable and the driver $f$ is continuous with general growth with respect to the variable $y$ and stochastic quadratic growth with respect to the variable $z$. Our result is based on a (generalized) penalization method. This method allow us find an equivalent form to our original RBSDE where its solution has to remain between two new rcll reflecting barriers $overline{Y}$ and $underline{Y}$ which are, roughly speaking, the limit of the penalizing equations driven by the dominating conditions assumed on the coefficients. A standard and equivalent form to our initial RBSDE as well as a characterization of the solution $Y$ as a generalized Snell envelope of some given predictable process $l$ are also given.



قيم البحث

اقرأ أيضاً

172 - Dong Cao , Shanjian Tang 2019
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e stimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
We study the problem of existence of solutions for generalized backward stochastic differential equation with two reflecting barriers (GRBSDE for short) under weaker assumptions on the data. Roughly speaking we show the existence of a maximal solutio n for GRBSDE when the terminal condition xi is F_T-measurable, the coefficient f is continuous with general growth with respect to the variable y and stochastic quadratic growth with respect to the variable z and the reflecting barriers L and U are just right continuous left limited. The result is proved without assuming any P-integrability conditions.
99 - Ying Hu , Xun Li , Jiaqiang Wen 2019
In this paper, we study the solvability of anticipated backward stochastic differential equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional case. In these BSDEs, the generator, which is of quadratic growt h in Z, involves not only the present information of solution (Y, Z) but also its future one. The existence and uniqueness of such BSDEs, under different conditions, are derived for several terminal situations, including small terminal value, bounded terminal value and unbounded terminal value.
192 - Shanjian Tang , Wei Zhong , 2013
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.
113 - Hel`ene Hibon 2017
In this paper, we give several new results on solvability of a quadratic BSDE whose generator depends also on the mean of both variables. First, we consider such a BSDE using John-Nirenbergs inequality for BMO martingales to estimate its contribution to the evolution of the first unknown variable. Then we consider the BSDE having an additive expected value of a quadratic generator in addition to the usual quadratic one. In this case, we use a deterministic shift transformation to the first unknown variable, when the usual quadratic generator depends neither on the first variable nor its mean, the general case can be treated by a fixed point argument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا