ﻻ يوجد ملخص باللغة العربية
We propose a scheme to engineer an effective spin Hamiltonian starting from a system of electrons confined in micro-Penning traps. By means of appropriate sequences of electromagnetic pulses, alternated to periods of free evolution, we control the shape and strength of the spin-spin interaction. Moreover, we can modify the effective magnetic field experienced by the particle spin. This procedure enables us to reproduce notable quantum spin systems, such as Ising and XY models. Thanks to its scalability, our scheme can be applied to a fairly large number of trapped particles within the reach of near future technology.
We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipol
We propose the use of 2-dimensional Penning trap arrays as a scalable platform for quantum simulation and quantum computing with trapped atomic ions. This approach involves placing arrays of micro-structured electrodes defining static electric quadru
Static magnetic field gradients superimposed on the electromagnetic trapping potential of a Penning trap can be used to implement laser-less spin-motion couplings that allow the realization of elementary quantum logic operations in the radio-frequenc
An array of planar Penning traps, holding single electrons, can realize an artificial molecule suitable for NMR-like quantum information processing. The effective spin-spin coupling is accomplished by applying a magnetic field gradient, combined to t
We have conceived, built, and operated a cryogenic Penning trap with an electrically conducting yet optically transparent solid electrode. The trap, dedicated to spectroscopy and imaging of confined particles under large solid angles is of half-open