ﻻ يوجد ملخص باللغة العربية
Static magnetic field gradients superimposed on the electromagnetic trapping potential of a Penning trap can be used to implement laser-less spin-motion couplings that allow the realization of elementary quantum logic operations in the radio-frequency regime. An important scenario of practical interest is the application to $g$-factor measurements with single (anti-)protons to test the fundamental charge, parity, time reversal (CPT) invariance as pursued in the BASE collaboration [Smorra et al., Eur. Phys. J. Spec. Top. 224, 3055-3108 (2015), Smorra et al., Nature 550, 371-374 (2017), Schneider et al., Science 358, 1081-1084 (2017)]. We discuss the classical and quantum behavior of a charged particle in a Penning trap with a superimposed magnetic field gradient. Using analytic and numerical calculations, we find that it is possible to carry out a SWAP gate between the spin and the motional qubit of a single (anti-)proton with high fidelity, provided the particle has been initialized in the motional ground state. We discuss the implications of our findings for the realization of quantum logic spectroscopy in this system.
Cosmological observations as well as theoretical approaches to physics beyond the Standard Model provide strong motivations for experimental tests of fundamental symmetries, such as CPT invariance. In this context, the availability of cold baryonic a
Current precision experiments with single (anti)protons to test CPT symmetry progress at a rapid pace, but are complicated by the need to cool particles to sub-thermal energies. We describe a cryogenic Penning-trap setup for $^9$Be$^+$ ions designed
We present the design, construction and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using Be-9 ions in a Penning trap. This article provides a detailed
State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-gr
Cold-atom interferometers commonly face systematic effects originating from the coupling between the trajectory of the atomic wave packet and the wave front of the laser beams driving the interferometer. Detrimental for the accuracy and the stability