ﻻ يوجد ملخص باللغة العربية
In arXiv:0805.2192, we set up a gauge-theoretic equation on symplectic 6-manifolds, which is a version of the Hermitian-Einstein equation perturbed by Higgs fields, and call Donaldson-Thomas equation, to analytically approach the Donaldson-Thomas invariants. In this article, we consider the equation on compact Kahler threefolds, and study some of analytic properties of solutions to them, using analytic methods in higher-dimensional Yang-Mills theory developed by Nakajima and Tian with some additional arguments concerning an extra non-linear term coming from the Higgs fields. We prove that a sequence of solutions to the Donaldson-Thomas equation of a unitary vector bundle over a compact Kahler threefold has a converging subsequence outside a closed subset whose real 2-dimensional Hausdorff measure is finite, provided that the L^2-norms of the Higgs fields are uniformly bounded. We also prove an n/2-compactness theorem of solutions to the equations on compact Kahler threefolds.
The contents of this article are now presented in the appendix of arXiv:0805.2195v2.
We consider a version of Hermitian-Einstein equation but perturbed by a Higgs field with a solution called a Donaldson-Thomas instanton on compact Kahler threefolds. The equation could be thought of as a generalization of the Hitchin equation on Riem
In alignment with a programme by Donaldson and Thomas [DT], Thomas [Th] constructed a deformation invariant for smooth projective Calabi-Yau threefolds, which is now called the Donaldson-Thomas invariant, from the moduli space of (semi-)stable sheave
We formulate the deformation theory for instantons on nearly Kahler six-manifolds using spinors and Dirac operators. Using this framework we identify the space of deformations of an irreducible instanton with semisimple structure group with the kerne
We construct balanced metrics on the family of non-Kahler Calabi-Yau threefolds that are obtained by smoothing after contracting $(-1,-1)$-rational curves on Kahler Calabi-Yau threefold. As an application, we construct balanced metrics on complex man