ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation around the HII region Sh2-235

130   0   0.0 ( 0 )
 نشر من قبل Maria Kirsanova S.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a picture of star formation around the HII region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO(1-0) and CS(2-1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the 2MASS survey. Dense molecular gas forms a shell-like structure at the south-eastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the HII region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the HII region (this is where the embedded clusters were formed), and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the HII region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the collect-and-collapse scenario and the compression of pre-existing dense clumps by the shock wave.



قيم البحث

اقرأ أيضاً

We present observations of the H-alpha, H-beta, [SII] 6716, 6731 and [NII] 6583 emission lines in the galactic HII region Sh2-235 with the Mapper of Narrow Galaxy Lines (MaNGaL), a tunable filter at the 1-m telescope of Special Astrophysical Observat ory of the Russian Academy of Sciences. We show that the HII region is obscured by neutral material with AV = 2-4 mag. The area with the highest AV is situated to the south-west from the ionizing star and coincides with a maximum detected electron density of >=300 cm(-3). The combination of these results with archive AKARI far-infrared data allows us to estimate the contribution of the front and rear walls to the total column density of neutral material in S235, and explain the three-dimensional structure of the region. The HII region consist of a denser, more compact portion deeply embedded in the neutral medium and the less dense and obscured gas. The front and rear walls of the HII region are inhomogeneous, with the material in the rear wall having a higher column density. We find a two-sided photodissociation region in the dense clump S235 East 1, illuminated by a UV field with G0=50-70 and 200 Habing units in the western and eastern parts, respectively.
To investigate the environment of HII region Sh2-163 and search for evidence of triggered star formation in this region, we performed a multi-wavelength study of this HII region. Most of our data were taken from large-scale surveys: 2MASS, CGPS, MSX and SCUBA. We also made CO molecular line observations, using the 13.7-m telescope. The ionized region of Sh2-163 is detected by both the optical and radio continuum observations. Sh2-163 is partially bordered by an arc-like photodissociation region (PDR), which is coincident with the strongest optical and radio emissions, indicating interactions between the HII region and the surrounding interstellar medium. Two molecular clouds were discovered on the border of the PDR. The morphology of these two clouds suggests they are compressed by the expansion of Sh2-163. In cloud A, we found two molecular clumps. And it seems star formation in clump A2 is much more active than in clump A1. In cloud B, we found new outflow activities and massive star(s) are forming inside. Using 2MASS photometry, we tried to search for embedded young stellar object (YSO) candidates in this region. The very good agreement between CO emission, infrared shell and YSOs suggest that it is probably a star formation region triggered by the expansion of Sh2-163.We also found the most likely massive protostar related to IRAS 23314+6033.
125 - Jin-Long Xu , Ye Xu , Naiping Yu 2017
We performed a multiwavelength study towards HII region Sh2-104. New maps of 12CO J=1-0 and 13CO J=1-0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. Sh2-104 displays a double-ring structure. The outer ring with a ra dius of 4.4 pc is dominated by 12 um, 500 um, 12CO J=1-0, and 13CO J=1-0 emission, while the inner ring with a radius of 2.9 pc is dominated by 22 um and 21 cm emission. We did not detect CO emission inside the outer ring. The north-east portion of the outer ring is blueshifted, while the south-west portion is redshifted. The present observations have provided evidence that the collected outer ring around Sh2-104 is a two-dimensional structure. From the column density map constructed by the Hi-GAL survey data, we extract 21 clumps. About 90% of all the clumps will form low-mass stars. A power-law fit to the clumps yields M=281Msun(r/pc)^1.31. The selected YSOs are associated with the collected material on the edge of Sh2-104. The derived dynamical age of Sh2-104 is 1.6*10^6 yr. Compared the Sh2-104 dynamical age with the YSOs timescale and the fragmentation time of the molecular ring, we further confirm that collect-and-collapse process operates in this region, indicating a positive feedback from a massive star for surrounding gas.
We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is d ifficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا