ترغب بنشر مسار تعليمي؟ اضغط هنا

Tri-crystal fixed exit monochromator

110   0   0.0 ( 0 )
 نشر من قبل Ivan L. Zhogin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I.L. Zhogin




اسأل ChatGPT حول البحث

It is proposed a novel design of an X-ray monochromator which uses three crystals. The exit beam turns in horizontal plane on the angle $2alpha$ with respect to the incoming beam. So, this kind of monochromator is suitable for side beam-lines; several tunable beam-lines can be built for a one fan beam of synchrotron radiation (from wiggler or bending magnet). In contrast to the double-crystal scheme of general position considered previously (which also suitable for side beam-lines), the new variant does not lead to a tilt of exit beam profile.

قيم البحث

اقرأ أيضاً

The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, $mu^- + Al to e^- +Al$. Data collection start is planned for the end of 2021. The dynamics of s uch charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates %convrate of $leq 6 times 10^{-17}$ (@ 90$%$ C.L.). R$_{mu e} = frac{mu^- + A(Z,N) to e^- +A(Z,N)}{mu^- + A(Z,N) to u_{mu} ^- +A(Z-1,N)} $ of $leq 6 times 10^{-17}$ (@ 90$%$ C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for $mu to e gamma$ decay at MEG as well as the direct searches for new physics at the LHC. The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons ($sim 10^{10} mu/$ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.
Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum.
428 - P. Belli 2011
A strontium iodide crystal doped by europium (SrI2(Eu)) was produced by using the Stockbarger growth technique. The crystal was subjected to a characterization that includes relative photoelectron output and energy resolution for gamma quanta. The in trinsic radioactivity of the SrI2(Eu) crystal scintillator was tested both by using it as scintillator at sea level and by ultra-low background HPGe gamma spectrometry deep underground. The response of the SrI2(Eu) detector to alpha particles (alpha/beta ratio and pulse shape) was estimated by analysing the 226Ra internal trace contamination of the crystal. We have measured: alpha/beta=0.55 at E_alpha=7.7 MeV, and no difference in the time decay of the scintillation pulses induced by alpha particles and gamma quanta. The application of the obtained results in the search for the double electron capture and electron capture with positron emission in 84Sr has been investigated at a level of sensitivity: T_1/2 sim 10^{15}-10^{16} yr. The results of these studies demonstrate the potentiality of this material for a variety of scintillation applications, including low-level counting experiments.
The upgrade of the DA$Phi$NE machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE$^2$ thus asking for the realization of two new calorimeters covering the quadrupoles area. To improve the reconstru ction of $K_Lto 2pi^0$ events with photons hitting the quadrupoles, a tile calorimeter, QCALT, with high efficiency to low energy photons (20-300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. We propose a tile calorimeter with a high granularity readout corresponding to about 2500 silicon photomultipliers (SiPM) of $1times 1$ mm$^2$ area. Moreover, the low polar angle regions need the realization of a dense crystal calorimeter with very high time resolution performances to extend the acceptance for multiphotons events. Best candidates for this calorimeter are LYSO crystals with APD readout or PbWO$_4$ crystals with large area SIPM readout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا