ﻻ يوجد ملخص باللغة العربية
A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B_2g and A_2g representations of the D_4h group, respectively.
The interplay between the structural and magnetic phase transitions occurring in the Fe-based pnictide superconductors is studied within a Ginzburg-Landau approach. We show that the magnetoelastic coupling between the corresponding order parameters i
The electronic origin of the huge magnetostructural effect in layered Fe-As compounds is elucidated using LiFeAs as a prototype. The crucial feature of these materials is the strong covalent bonding between Fe and As, which tends to suppress the exch
We present a comprehensive comparison of the infrared charge response of two systems, characteristic of classes of the 122 pnictide (SrFe2As2) and 11 chalcogenide (Fe_1.087Te) Fe compounds with magnetically-ordered ground states. In the 122 system, t
The interplay of high and low-energy mass renormalizations with band-shifts reflected by the positions of van Hove singularities (VHS) in the normal state spectra of the highest hole-overdoped and strongly correlated AFe$_2$As$_2$ (A122) with A = K,
A microscopic theory of superconductivity is formulated within an effective $p$-$d$ Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. T