ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary Star Origin of High Field Magnetic White Dwarfs

185   0   0.0 ( 0 )
 نشر من قبل Christopher Adam Tout
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarfs with surface magnetic fields in excess of $1 $MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1,253 white dwarfs with a detached low-mass main-sequence companion are identified in the Sloan Digital Sky Survey but none of these is observed to show evidence for Zeeman splitting of hydrogen lines associated with a magnetic field in excess of 1MG. If such high magnetic fields on white dwarfs result from the isolated evolution of a single star then there should be the same fraction of high field white dwarfs among this SDSS binary sample as among single stars. Thus we deduce that the origin of such high magnetic fields must be intimately tied to the formation of cataclysmic variables. CVs emerge from common envelope evolution as very close but detached binary stars that are then brought together by magnetic braking or gravitational radiation. We propose that the smaller the orbital separation at the end of the common envelope phase, the stronger the magnetic field. The magnetic cataclysmic variables originate from those common envelope systems that almost merge. We propose further that those common envelope systems that do merge are the progenitors of the single high field white dwarfs. Thus all highly magnetic white dwarfs, be they single stars or the components of MCVs, have a binary origin. This hypothesis also accounts for the relative dearth of single white dwarfs with fields of 10,000 - 1,000,000G. Such intermediate-field white dwarfs are found preferentially in cataclysmic variables. In addition the bias towards higher masses for highly magnetic white dwarfs is expected if a fraction of these form when two degenerate cores merge in a common envelope. Similar scenarios may account for very high field neutron stars.



قيم البحث

اقرأ أيضاً

High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convec tive, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores is able to produce magnetic fields of the required strength that do not decay for long timescales. We also show, using an state-of-the-art Monte Carlo simulator, that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.
141 - Adela Kawka 2020
A significant fraction of white dwarfs possess a magnetic field with strengths ranging from a few kG up to about 1000 MG. However, the incidence of magnetism varies when the white dwarf population is broken down into different spectral types providin g clues on the formation of magnetic fields in white dwarfs. Several scenarios for the origin of magnetic fields have been proposed from a fossil field origin to dynamo generation at various stages of evolution. Offset dipoles are often assumed sufficient to model the field structure, however time-resolved spectropolarimetric observations have revealed more complex structures such as magnetic spots or multipoles. Surface mapping of these field structures combined with measured rotation rates help distinguish scenarios involving single star evolution from other scenarios involving binary interactions. I describe key observational properties of magnetic white dwarfs such as age, mass, and field strength, and confront proposed formation scenarios with these properties.
118 - A. Kawka 2018
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.
In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the upper limit cutoff appears to be real, the lower limit is more difficult to investigate. The incidence of magnetism below a few 10^3G still needs to be established by sensitive spectropolarimetric surveys conducted on 8m class telescopes. Highly magnetic WDs tend to exhibit a complex and non-dipolar field structure with some objects showing the presence of higher order multipoles. There is no evidence that fields of highly magnetic WDs decay over time, which is consistent with the estimated Ohmic decay times scales of ~10^11 yrs. MWDs, as a class, also appear to be more massive than their weakly or non-magnetic counterparts. MWDs are also found in binary systems where they accrete matter from a low-mass donor star. These binaries, called magnetic Cataclysmic Variables (MCVs) and comprise about 20-25% of all known CVs. Zeeman and cyclotron spectroscopy of MCVs have revealed the presence of fields in the range $sim 7-230$,MG. Complex field geometries have been inferred in the high field MCVs (the polars) whilst magnetic field strength and structure in the lower field group (intermediate polars, IPs) are much harder to establish. The origin of fields in MWDs is still being debated. While the fossil field hypothesis remains an attractive possibility, field generation within the common envelope of a binary system has been gaining momentum, since it would explain the absence of MWDs paired with non-degenerate companions and also the lack of relatively wide pre-MCVs.
53 - K. Reinsch 2004
We have started a systematic study of the field topologies of magnetic single and accreting white dwarfs using Zeeman tomography. Here we report on our analysis of phase-resolved flux and circular polarization spectra of the magnetic cataclysmic vari ables BL Hyi and MR Ser obtained with FORS1 at the ESO VLT. For both systems we find that the field topologies are more complex than a dipole or an offset dipole and require at least multipole expansions up to order l = 3 to adequately describe the observed Zeeman features and their variations with rotational phase. Overall our model fits are in excellent agreement with observations. Remaining residuals indicate that the field topologies might even be more complex. It is, however, assuring that the global characteristics of our solutions are consistent with the average effective field strengths and the halo field strengths derived from intensity spectra in the past.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا