ﻻ يوجد ملخص باللغة العربية
We have started a systematic study of the field topologies of magnetic single and accreting white dwarfs using Zeeman tomography. Here we report on our analysis of phase-resolved flux and circular polarization spectra of the magnetic cataclysmic variables BL Hyi and MR Ser obtained with FORS1 at the ESO VLT. For both systems we find that the field topologies are more complex than a dipole or an offset dipole and require at least multipole expansions up to order l = 3 to adequately describe the observed Zeeman features and their variations with rotational phase. Overall our model fits are in excellent agreement with observations. Remaining residuals indicate that the field topologies might even be more complex. It is, however, assuring that the global characteristics of our solutions are consistent with the average effective field strengths and the halo field strengths derived from intensity spectra in the past.
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of
High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convec
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in clos
A significant fraction of white dwarfs possess a magnetic field with strengths ranging from a few kG up to about 1000 MG. However, the incidence of magnetism varies when the white dwarf population is broken down into different spectral types providin
Collimated outflows from accreting white dwarfs have an important role to play in the study of astrophysical jets. Observationally, collimated outflows are associated with systems in which material is accreted though a disk. Theoretically, accretion