ﻻ يوجد ملخص باللغة العربية
Multi-epoch radio-interferometric observations of young stellar objects can be used to measure their displacement over the celestial sphere with a level of precision that currently cannot be attained at any other wavelength. In particular, the accuracy achieved using carefully calibrated, phase-referenced observations with the Very Long Baseline Array is better than 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and the proper motion of any radio-emitting young star within several hundred parsecs of the Sun with an accuracy better than a few percents. Taking advantage of this situation, we have initiated a large project aimed mainly at measuring the distance to the nearest regions of star-formation (Taurus, Ophiuchus, Perseus, etc.). Here, we will present the results for several stars in Taurus and Ophiuchus, and show that the accuracy obtained is already more than one order of magnitude better than that of previous estimates. The proper motion obtained from the data can also provide important information, particularly in multiple stellar systems. To illustrate this point, we will present the case of the famous system T Tauri, where the VLBA data provide crucial information for the characterization of the orbital path.
Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsa
Observations of two of the formaldehyde (H2CO) masers (A and D) in Sgr B2 using the VLBA+Y27 (resolution ~0.01) and the VLA (resolution ~9) are presented. The VLBA observations show compact sources (<10 milliarcseconds, <80 AU) with brightness temper
PAHs have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-IR spectroscopic survey of PAH features toward a sample of low-mass embedded YSOs.
Very low-mass Class I protostars have been investigated very little thus far. Variability of these young stellar objects (YSOs) and whether or not they are capable of strong episodic accretion is also left relatively unstudied. We investigate accreti
We present the first pulsar parallaxes measured with phase-referenced pulsar VLBI observations at 5 GHz. Due to the steep spectra of pulsars, previous astrometric measurements have been at lower frequencies. However, the strongest pulsars can be obse