ترغب بنشر مسار تعليمي؟ اضغط هنا

The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances

46   0   0.0 ( 0 )
 نشر من قبل Gustavo Porto de Mello
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The alpha Centauri binary system, owing to its duplicity, proximity and brightness, and its components likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. We report a new spectroscopic analysis of both components of the alpha Centauri binary system and compare published analyses of the system. The analysis is differential with respect to the Sun, based on high-quality spectra, and employed spectroscopic and photometric methods to obtain as many independent Teff determinations as possible. The atmospheric parameters are also checked for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. We discuss possible origins of discrepancies, concluding that the presence of NLTE effects is a probable candidate, but we note that there is as yet no consensus on the existence and cause of an offset between the spectroscopic and photometric Teff scales of cool dwarfs. The spectroscopic surface gravities also agree with those derived from directly measured masses and radii. The abundance pattern can be deemed normal in the context of recent data on metal-rich stars. The position of alpha Cen A in an up-to-date theoretical evolutionary diagrams yields a good match of the evolutionary mass and age with those from the dynamical solution and seismology.

قيم البحث

اقرأ أيضاً

58 - M. Fabrizio , M. Nonino , G. Bono 2015
We have performed a new abundance analysis of Carina Red Giant (RG) stars from spectroscopic data collected with UVES (high resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter co nsists of 65 (high) and ~800 (medium resolution) RGs, covering a significant fraction of the galaxys RG branch (RGB), and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity/temperature bin were stacked. This approach allowed us to increase by at least a factor of five the signal-to-noise ratio in the faint limit (V>20.5mag). We took advantage of the new photometry index cU,B,I introduced by Monelli et al. (2014), as an age and probably a metallicity indicator, to split stars along the RGB. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean Fe abundances are -2.15$pm$0.06dex (sig=0.28), and -1.75$pm$0.03dex (sig=0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results by Lemasle et al. (2012) and by Monelli et al. (2014). Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91$pm$0.05dex (sig=0.22) and -1.35$pm$0.03dex (sig=0.22); these differ at the 83% level. Carinas {alpha}-element abundances agree, within 1sigma, with similar abundances for field Halo stars and for cluster (Galactic, Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies, in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carinas chemical enrichment history is quite different than in the globular clusters.
We use more than a decade of radial velocity measurements for $alpha$ Cen A, B, and Proxima Centauri from HARPS, CHIRON, and UVES to identify the $M sin i$ and orbital periods of planets that could have been detected if they existed. At each point in a mass-period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about $M sin i$ of 53 M$_{oplus}$ for $alpha$ Cen A, 8.4 M$_{oplus}$ for $alpha$ Cen B, and 0.47 M$_{oplus}$ for Proxima Centauri. Additionally, we examine the impact of systematic errors, or red noise in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the $alpha$ Centauri stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the $alpha$ Cen system may be compositionally similar to our terrestrial planets. Although the small projected separation of $alpha$ Cen A and B currently hampers extreme-precision radial velocity measurements, the angular separation is now increasing. By 2019, $alpha$ Cen A and B will be ideal targets for renewed Doppler planet surveys.
We present [Fe/H] and [$alpha$/Fe] abundances, derived using spectral synthesis techniques, for stars in M31s outer stellar halo. The 21 [Fe/H] measurements and 7 [$alpha$/Fe] measurements are drawn from fields ranging from 43 to 165 kpc in projected distance from M31. We combine our measurements with existing literature measurements, and compare the resulting sample of 23 stars with [Fe/H] and 9 stars with [$alpha$/Fe] measurements in M31s outer halo with [$alpha$/Fe] and [Fe/H] measurements, also derived from spectral synthesis, in M31s inner stellar halo ($r < $26 kpc) and dSph galaxies. The stars in M31s outer halo have [$alpha$/Fe] patterns that are consistent with the largest of M31s dSph satellites (And I and And VII). These abundances provide tentative evidence that the [$alpha$/Fe] abundances of stars in M31s outer halo are more similar to the abundances of Milky Way halo stars than to the abundances of stars in M31s inner halo. We also compare the spectral synthesis-based [Fe/H] measurements of stars in M31s halo with previous photometric [Fe/H] estimates, as a function of projected distance from M31. The spectral synthesis-based [Fe/H] measurements are consistent with a large-scale metallicity gradient previously observed in M31s stellar halo to projected distances as large as 100 kpc.
We present an automated procedure for the derivation of atmospheric parameters (Teff, log g, [M/H]) and individual chemical abundances from stellar spectra. The MATrix Inversion for Spectral SythEsis (MATISSE) algorithm determines a basis, B_theta(la mbda), allowing to derive a particular stellar parameter theta by projection of an observed spectrum. The B_theta(lambda) function is determined from an optimal linear combination of theoretical spectra and it relates, in a quantitative way, the variations in the spectrum flux with variations in theta. An application of this method to the GAIA/RVS spectral range is described, together with its performances for different types of stars of various metallicities. Blind tests with synthetic spectra of randomly selected parameters and observed input spectra are also presented. The method gives rapid, accurate and stable results and it can be efficiently applied to the study of stellar populations through the analysis of large spectral data sets, including moderate to low signal to noise spectra.
The stability of planets in the alpha-Centauri AB stellar system has been studied extensively. However, most studies either focus on the orbital plane of the binary or consider inclined circular orbits. Here, we numerically investigate the stabilit y of a possible planet in the alpha-Centauri AB binary system for S-type orbits in an arbitrary spatial configuration. In particular, we focus on inclined orbits and explore the stability for different eccentricities and orientation angles. We show that large stable and regular regions are present for very eccentric and inclined orbits, corresponding to libration in the Lidov-Kozai resonance. We additionally show that these extreme orbits can survive over the age of the system, despite the effect of tides. Our results remain qualitatively the same for any compact binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا