ترغب بنشر مسار تعليمي؟ اضغط هنا

Planet Detectability in the Alpha Centauri System

249   0   0.0 ( 0 )
 نشر من قبل Lily Zhao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use more than a decade of radial velocity measurements for $alpha$ Cen A, B, and Proxima Centauri from HARPS, CHIRON, and UVES to identify the $M sin i$ and orbital periods of planets that could have been detected if they existed. At each point in a mass-period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about $M sin i$ of 53 M$_{oplus}$ for $alpha$ Cen A, 8.4 M$_{oplus}$ for $alpha$ Cen B, and 0.47 M$_{oplus}$ for Proxima Centauri. Additionally, we examine the impact of systematic errors, or red noise in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the $alpha$ Centauri stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the $alpha$ Cen system may be compositionally similar to our terrestrial planets. Although the small projected separation of $alpha$ Cen A and B currently hampers extreme-precision radial velocity measurements, the angular separation is now increasing. By 2019, $alpha$ Cen A and B will be ideal targets for renewed Doppler planet surveys.

قيم البحث

اقرأ أيضاً

The stability of planets in the alpha-Centauri AB stellar system has been studied extensively. However, most studies either focus on the orbital plane of the binary or consider inclined circular orbits. Here, we numerically investigate the stabilit y of a possible planet in the alpha-Centauri AB binary system for S-type orbits in an arbitrary spatial configuration. In particular, we focus on inclined orbits and explore the stability for different eccentricities and orientation angles. We show that large stable and regular regions are present for very eccentric and inclined orbits, corresponding to libration in the Lidov-Kozai resonance. We additionally show that these extreme orbits can survive over the age of the system, despite the effect of tides. Our results remain qualitatively the same for any compact binary system.
The discovery of a planet orbiting around Proxima Centauri, the closest star to the Sun, opens new avenues for the remote observations of the atmosphere and surface of an exoplanet, Proxima b. To date, three-dimensional (3D) General Circulation Model s (GCMs) are the best available tools to investigate the properties of the exo-atmospheres, waiting for the next generation of space and groundbased telescopes. In this work, we use the PlanetSimulator (PlaSim), an intermediate complexity 3D GCM, a flexible and fast model, suited to handle all the orbital and physical parameters of a planet and to study the dynamics of its atmosphere. Assuming an Earth-like atmosphere and a 1:1 spin/orbit configuration (tidal locking), our simulations of Proxima b are consistent with a day-side open ocean planet with a superrotating atmosphere. Moreover, because of the limited representation of the radiative transfer in PlaSim, we compute the spectrum of the exoplanet with an offline Radiative Transfer Code with a spectral resolution of 1 nm. This spectrum is used to derive the thermal phase curves for different orbital inclination angles. In combination with instrumental detection sensitivities, the different thermal phase curves are used to evaluate observation conditions at ground level (e.g., ELT) or in space (e.g., JWST). We estimated the exposure time to detect Proxima b (assuming an Earth-like atmosphere) thermal phase curve in the FIR with JWST with signal-to-noise ratio $simeq$1. Under the hypothesis of total noise dominated by shot noise, neglecting other possible extra contribution producing a noise floor, the exposure time is equal to 5 hours for each orbital epoch.
Two planetary mass objects in the far outer Solar System --- collectively referred to here as Planet X --- have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptional ly faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18,000 deg$^2$), deep (limiting magnitude of individual frames of 24.5) survey (the wide-fast-deep survey) of the southern sky beginning in 2022, and is therefore an important tool to search for these hypothesized planets. Here we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the wide-fast-deep survey plus additional coverage) we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to $sim$75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a non-detection of Planet X in LSST data.
We investigate the physical characteristics of the Solar Systems proposed Planet Nine using modeling tools with a heritage in studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic Teff, from ~35-50 K for masses of 5-20 M_Earth, and we also explore lower Teff values. Possible planetary radii could readily span from 3 to 6 R_Earth depending on the mass fraction of any H/He envelope. Given its cold temperature, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo approaching 0.75. We highlight two diagnostics for the atmospheres temperature structure, the first being the value of the methane mixing ratio above the methane cloud. The second is the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H2 in the infrared, the planet would be extremely blue (instead of red) in the shortest wavelength WISE colors if methane is depleted, and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from ~3-5 microns are ~20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا