ترغب بنشر مسار تعليمي؟ اضغط هنا

A geometric study of Wasserstein spaces: Euclidean spaces

123   0   0.0 ( 0 )
 نشر من قبل Benoit Kloeckner
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Benoit Kloeckner




اسأل ChatGPT حول البحث

We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) exotic isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.



قيم البحث

اقرأ أيضاً

178 - Jer^ome Bertrand 2013
We extend the geometric study of the Wasserstein space W(X) of a simply connected, negatively curved metric space X by investigating which pairs of boundary points can be linked by a geodesic, when X is a tree.
178 - Benoit Kloeckner 2011
A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we gener alize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has power-exponential critical parameter equal to d.
In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo-Euclidean space ($R^d$ with a metric of indefinite signature). We show that a graph is gener ically globally rigid in Euclidean space iff it is generically globally rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity is always a generic property of a graph in complex space, and give a sufficient condition for it to be a generic property in a pseudo-Euclidean space. Extensions to hyperbolic space are also discussed.
78 - Bernd Sing 2006
We investigate graph-directed iterated function systems in mixed Euclidean and p-adic spaces. Hausdorff measure and Hausdorff dimension in such spaces are defined, and an upper bound for the Hausdorff dimension is obtained. The relation between the H aar measure and the Hausdorff measure is clarified. Finally, we discus an example in ${Bbb R}times{Bbb Q}sb 2$ and calculate upper and lower bounds for its Hausdorff dimension.
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by $I(mu) = int_X int_X d(x,y) dmu(x) dmu(y)$, and set $M(X) = sup I(mu)$, where $mu$ rang es over the collection of measures in $mathcal{M}(X)$ of total mass 1. The space $(X, d)$ is emph{quasihypermetric} if $I(mu) leq 0$ for all measures $mu$ in $mathcal{M}(X)$ of total mass 0 and is emph{strictly quasihypermetric} if in addition the equality $I(mu) = 0$ holds amongst measures $mu$ of mass 0 only for the zero measure. This paper explores the constant $M(X)$ and other geometric aspects of $X$ in the case when the space $X$ is finite, focusing first on the significance of the maximal strictly quasihypermetric subspaces of a given finite quasihypermetric space and second on the class of finite metric spaces which are $L^1$-embeddable. While most of the results are for finite spaces, several apply also in the general compact case. The analysis builds upon earlier more general work of the authors [Peter Nickolas and Reinhard Wolf, emph{Distance geometry in quasihypermetric spaces. I}, emph{II} and emph{III}].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا