ﻻ يوجد ملخص باللغة العربية
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by $I(mu) = int_X int_X d(x,y) dmu(x) dmu(y)$, and set $M(X) = sup I(mu)$, where $mu$ ranges over the collection of measures in $mathcal{M}(X)$ of total mass 1. The space $(X, d)$ is emph{quasihypermetric} if $I(mu) leq 0$ for all measures $mu$ in $mathcal{M}(X)$ of total mass 0 and is emph{strictly quasihypermetric} if in addition the equality $I(mu) = 0$ holds amongst measures $mu$ of mass 0 only for the zero measure. This paper explores the constant $M(X)$ and other geometric aspects of $X$ in the case when the space $X$ is finite, focusing first on the significance of the maximal strictly quasihypermetric subspaces of a given finite quasihypermetric space and second on the class of finite metric spaces which are $L^1$-embeddable. While most of the results are for finite spaces, several apply also in the general compact case. The analysis builds upon earlier more general work of the authors [Peter Nickolas and Reinhard Wolf, emph{Distance geometry in quasihypermetric spaces. I}, emph{II} and emph{III}].
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [I(mu) = int_X int_X d(x,y) dmu(x) dmu(y),] and set $M(X) = sup I(mu)$, where $mu$ rang
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra
A metric space $X$ is rigid if the isometry group of $X$ is trivial. The finite ultrametric spaces $X$ with $|X| geq 2$ are not rigid since for every such $X$ there is a self-isometry having exactly $|X|-2$ fixed points. Using the representing trees
Negative type inequalities arise in the study of embedding properties of metric spaces, but they often reduce to intractable combinatorial problems. In this paper we study more quantitati