ﻻ يوجد ملخص باللغة العربية
This paper studies the properties of a new lower bound for the natural pseudo-distance. The natural pseudo-distance is a dissimilarity measure between shapes, where a shape is viewed as a topological space endowed with a real-valued continuous function. Measuring dissimilarity amounts to minimizing the change in the functions due to the application of homeomorphisms between topological spaces, with respect to the $L_infty$-norm. In order to obtain the lower bound, a suitable metric between size functions, called matching distance, is introduced. It compares size functions by solving an optimal matching problem between countable point sets. The matching distance is shown to be resistant to perturbations, implying that it is always smaller than the natural pseudo-distance. We also prove that the lower bound so obtained is sharp and cannot be improved by any other distance between size functions.
Some new results about multidimensional Topological Persistence are presented, proving that the discontinuity points of a k-dimensional size function are necessarily related to the pseudocritical or special values of the associated measuring function.
Comparison between multidimensional persistent Betti numbers is often based on the multidimensional matching distance. While this metric is rather simple to define and compute by considering a suitable family of filtering functions associated with li
Given two shapes $A$ and $B$ in the plane with Hausdorff distance $1$, is there a shape $S$ with Hausdorff distance $1/2$ to and from $A$ and $B$? The answer is always yes, and depending on convexity of $A$ and/or $B$, $S$ may be convex, connected, o
This paper proves that in Size Theory the comparison of multidimensional size functions can be reduced to the 1-dimensional case by a suitable change of variables. Indeed, we show that a foliation in half-planes can be given, such that the restrictio
We describe a new data structure for dynamic nearest neighbor queries in the plane with respect to a general family of distance functions. These include $L_p$-norms and additively weighted Euclidean distances. Our data structure supports general (con