ﻻ يوجد ملخص باللغة العربية
We propose a method to prepare a sample of fermionic atoms in a three-dimensional (3D) optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the ground band are removed. Of critical importance is the use of a non-harmonic trapping potential, taken here to be the radial profile of a high-order Laguerre-Gaussian laser beam, to provide external confinement for the atoms. For realistic experimental parameters, this procedure should produce samples with temperatures $sim10^{-3}$ of the Fermi temperature. This would allow the investigation of the low-temperature phase diagram of the Fermi-Hubbard model as well as the initialization of a high-fidelity quantum register.
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical chequerboard square lattice. For the spin-polarized case, extreme band lifetimes above $10,$s are observed, refl
We demonstrate a novel technique for cooling a degenerate Fermi gas in a crossed-beam optical dipole trap, where high-energy atoms can be selectively removed from the trap by modulating the stiffness of the trapping potential with anharmonic trapping
Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of $4 times 10^{-17}$. Previously, atomic interactions have forced a compromise between clock stability, whic
We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we observe a change of the density of states of the system, which is a signature of quasi two dim
In this paper we analytically investigate the ground-state properties of a two-dimensional polarized degenerate Fermi gas in a high-finesse optical cavity, which is governed by a generalized Fermi-Dicke model with tunable parameters. By solving the p