ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of the hole and electron doped perovskites LnCoO3

68   0   0.0 ( 0 )
 نشر من قبل Karel Knizek
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two extreme members of the cobaltite series, LaCoO3 and DyCoO3, were investigated by the electrical resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La based compounds were complemented with magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding CoIII sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low temperature resistivity, which is of Arrhenius type r~exp(EA/kT) for the hole (CoIV) doped samples, while an unusual dependence r~1/Tn (n=8-10) is observed for the electron (CoII) doped samples. At higher temperatures, additional hole carriers are massively populated in the CoIII background, leading to a resistivity drop. This transition become evident at ~300 K and 450 K and culminates at TI-M=540 and 780 K for the La and Dy based samples, respectively. The electronic behaviours of the cobaltites are explained considering two excitation processes in parent compounds. The first one is related to a local excitation from the diamagnetic LS CoIII to close-lying paramagnetic HS CoIII state. Secondarily, a metallic phase of the IS CoIII character is formed through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such IS phase.


قيم البحث

اقرأ أيضاً

We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of t he Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
Fundamental and harmonic magneto-dielectricity studied for varied perovskite systems-- Pb0.98Gd0.02(Mg1/3Nb2/3)0.995O3 (A-site co-doped PGMN magneto-relaxor), La0.95Ca0.05CoO3 (A-site doped spin-state LCCO), and La2NiMnO6 (double-perovskite LNMO mult iglass) characterize intricately polarized phases. First-harmonic signal ({epsilon}2) of magnetically co-doped PGMN manifests finite polarization P(H) below 270K, corroborated by the measured remnant P-E traces. Second-harmonic ({epsilon}3) reveals the effect of random E-fields causing electrical vitreousity, latter indicated by the divergent timescale of the fundamental response. LCCO features mixed-dipoles phase over appreciable temperature window, affiliated to the coexistent low-spins (LS) and intermediate-spins (IS). Across the 65K-start of IS-to-LS state transition (SST), dc- and ac-conductivities of LCCO exhibit mechanism-changeovers whereas the harmonic susceptibilities evidence IS/LS-interfacial hyper-polarizations. Below the 30K-end of SST, harmonics corroborate the vitreous phase of dipoles in the LS-matrix state. In the LNMO, positive and negative (dual) magneto-dielectricity observed is respectively attributed to the charge-hopping between Ni2+ and Mn4+ ions and the interfacial polarization. Second-harmonic signal here also features dispersion corresponding to the activation energy required for the electron transfer between Ni- and Mn-cations. Results from three different perovskite systems signify the combined importance of first- and second-harmonics, for a detailed understanding of electrical configurations.
Using density-functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB$^{2+}$X$_3$) and double perovskites (AB$^+$B$^{3+}$X$_6$) (A = Cs or monovalent organic ion, B$^{2+}$ = non-Pb d ivalent metal, B$^+$ = monovalent metal, B$^{3+}$ = trivalent metal, X = halogen). We show that, if B$^{2+}$ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect bandgap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct bandgaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell application. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely those with B$^+$ = In, Tl and B$^{3+}$ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.
New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 oC. All samples are monoclinic, space group P21/n, as obtained from Rietveld analysis of X-r ay powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+ - O2- - Mn2+.
222 - S. Kolesnik , B. Dabrowski , 2008
We combine the results of magnetic and transport measurements with neutron diffraction data to construct the structural and magnetic phase diagram of the entire family of SrMn$_{1-x}$Ru$_{x}$O$_3$ ($0 leqslant x leqslant 1$) perovskites. We have foun d antiferromagnetic ordering of the C type for lightly Ru-substituted materials ($0.06 leqslant x leqslant 0.5$) in a similar manner to $R_{y}$Sr$_{1-y}$MnO$_3$ ($R$=La, Pr), due to the generation of Mn$^{3+}$ in both families of manganite perovskites by either $B$-site substitution of Ru$^{5+}$ for Mn$^{4+}$ or $A$-site substitution of $R^{3+}$ for Sr$^{2+}$. This similarity is driven by the same ratio of $d^4$ / $d^3$ ions in both classes of materials for equivalent substitution level. In both cases, a tetragonal lattice distortion is observed, which for some compositions ($0.06 leqslant x leqslant 0.2$) is coupled to a C-type AF transition and results in a first order magnetic and resistive transition. Heavily substituted SrMn$_{1-x}$Ru$_{x}$O$_3$ materials are ferromagnetic due to dominating exchange interactions between the Ru$^{4+}$ ions. Intermediate substitution ($0.6 leqslant x leqslant 0.7$) leads to a spin-glass behavior instead of a quantum critical point reported previously in single crystals, due to enhanced disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا