ﻻ يوجد ملخص باللغة العربية
The form of the inflationary potential is severely restricted if one requires that it be natural in the technical sense, i.e. terms of unrelated origin are not required to be correlated. We determine the constraints on observables that are implied in such natural inflationary models, in particular on $r$, the ratio of tensor to scalar perturbations. We find that the naturalness constraint does not require $r$ to be lare enough to be detectable by the forthcoming searches for B-mode polarisation in CMB maps. We show also that the value of $r$ is a sensitive discriminator between inflationary models.
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep
We investigate the inflationary consequences of the oscillating dark energy model proposed by Tian [href{https://doi.org/10.1103/PhysRevD.101.063531}{Phys. Rev. D {bf 101}, 063531 (2020)}], which aims to solve the cosmological coincidence problem wit
In a recent work, we had constructed a model consisting of two fields---a canonical scalar field and a non-canonical ghost field---that had sourced a symmetric matter bounce scenario. The model had involved only one parameter, viz. the scale associat
One of the firm predictions of the single-scalar field inflationary cosmology is the consistency relation between the scalar and tensor perturbations. It has been argued that such a relation, if observationally verified, would offer strong support fo
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape