ﻻ يوجد ملخص باللغة العربية
For a germ of a smooth map f and a subgroup G_V of any of the Mather groups G for which the source or target diffeomorphisms preserve some given volume form V in the source or in the target we study the G_V-moduli space of f that parameterizes the G_V-orbits inside the G-orbit of f. We find, for example, that this moduli space vanishes for A-equivalence with volume-preserving target diffeomorphisms and A-stable maps f and for K-equivalence with volume-preserving source diffeomorphisms and K-simple maps f. On the other hand, there are A-stable maps f with infinite-dimensional moduli space for A-equivalence with volume-preserving source diffeomorphisms.
We extend V. Arnolds theory of asymptotic linking for two volume preserving flows on a domain in ${mathbb R}^3$ and $S^3$ to volume preserving actions of ${mathbb R}^k$ and ${mathbb R}^ell$ on certain domains in ${mathbb R}^n$ and also to linking of
We consider the flow of closed convex hypersurfaces in Euclidean space $mathbb{R}^{n+1}$ with speed given by a power of the $k$-th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the m
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other low
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k
Smale-Barden manifolds are simply-connected closed 5-manifolds. It is an important and difficult question to decide when a Smale-Barden manifold admits a Sasakian or a K-contact structure. The known constructions of Sasakian and K-contact structures