ﻻ يوجد ملخص باللغة العربية
The phase-space structure of two families of galactic potentials is approximated with a resonant detuned normal form. The normal form series is obtained by a Lie transform of the series expansion around the minimum of the original Hamiltonian. Attention is focused on the quantitative predictive ability of the normal form. We find analytical expressions for bifurcations of periodic orbits and compare them with other analytical approaches and with numerical results. The predictions are quite reliable even outside the convergence radius of the perturbation and we analyze this result using resummation techniques of asymptotic series.
We discuss various bifurcation problems in which two isolated periodic orbits exchange periodic ``bridge orbit(s) between two successive bifurcations. We propose normal forms which locally describe the corresponding fixed point scenarios on the Poinc
We discuss the history of the monodromy theorem, starting from Weierstrass, and the concept of monodromy group. From this viewpoint we compare then the Weierstrass , the Legendre and other normal forms for elliptic curves, explaining their geometric
We investigate the behavior of the second fundamental form of an isometric immersion of a space form with negative curvature into a space form so that the extrinsic curvature is negative. If the immersion has flat normal bundle, we prove that its second fundamental form grows exponentially.
Quantum Decision Theory, advanced earlier by the authors, and illustrated for lotteries with gains, is generalized to the games containing lotteries with gains as well as losses. The mathematical structure of the approach is based on the theory of qu
We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to levera