ﻻ يوجد ملخص باللغة العربية
In this paper we study a one-dimensional space-discrete transport equation subject to additive Levy forcing. The explicit form of the solutions allows their analytic study. In particular we discuss the invariance of the covariance structure of the stationary distribution for Levy perturbations with finite second moment. The situation of more general Levy perturbations lacking the second moment is considered as well. We moreover show that some of the properties of the solutions are pertinent to a discrete system and are not reproduced by its continuous analogue.
We consider a one-dimensional Anderson model where the potential decays in average like $n^{-alpha}$, $alpha>0$. This simple model is known to display a rich phase diagram with different kinds of spectrum arising as the decay rate $alpha$ varies. W
For given two unitary and self-adjoint operators on a Hilbert space, a spectral mapping theorem was proved in cite{HiSeSu}. In this paper, as an application of the spectral mapping theorem, we investigate the spectrum of a one-dimensional split-step
We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type $n^{-alpha}$ for $alpha>0$. We recover all the spectral regimes previously obtain
This paper is about the scattering theory for one-dimensional matrix Schrodinger operators with a matrix potential having a finite first moment. The transmission coefficients are analytically continued and extended to the band edges. An explicit expr
We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropri