ﻻ يوجد ملخص باللغة العربية
Neutral particles can be guided and focussed using electric field gradients that focus in one transverse direction and defocus in the other, alternating between the two directions. Such a guide is suitable for transporting particles that are attracted to strong electric fields, which cannot be guided using static fields. Particles are only transmitted if their initial positions and transverse speeds lie within the guides phase space acceptance. Nonlinear forces are always present in the guide and can severely reduce this acceptance. We consider the effects of the two most important nonlinear forces, a term in the force that is cubic in the off-axis displacement, and a nonlinear term which couples together the two transverse motions. We use approximate analytical techniques, along with numerical methods, to calculate the influence of these nonlinear forces on the particle trajectories and on the phase space acceptance. The cubic term alters the focussing and defocussing powers, leading either to an increase or a decrease of the acceptance depending on its sign. We find an approximate analytical result for the phase space acceptance including this cubic term. Using a perturbation method we show how the coupling term leads to slow changes in the amplitudes of the transverse oscillations. This term reduces the acceptance when it reduces the focussing power, but has little influence when it increases that power. It is not possible to eliminate both nonlinear terms, but one can be made small at the expense of the other. We show how to choose the guide parameters so that the acceptance is optimized.
Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show, by calculation and numerical simulat
We study the guiding of $^{87}$Rb 59D$_{5/2}$ Rydberg atoms in a linear, high-gradient, two-wire magnetic guide. Time delayed microwave ionization and ion detection are used to probe the Rydberg atom motion. We observe guiding of Rydberg atoms over a
We have focused and decelerated benzonitrile (C$_7$H$_5$N) molecules from a molecular beam, using an array of time-varying inhomogeneous electric fields in alternating gradient configuration. Benzonitrile is prototypical for large asymmetric top mole
We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided b
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass sub