ﻻ يوجد ملخص باللغة العربية
The crystal structures of the A2B2O7-x Niobium-based pyrochlores Y2(Nb0.86Y0.14)2O6.91, CaYNb2O7, and Y2NbTiO7 are reported, determined by powder neutron diffraction. These compounds represent the first observation of B-site displacements in the pyrochlore structure: the B-site ions are found to be displaced from the ideal pyrochlore positions, creating electric dipoles. The orientations of these dipoles are fully analogous to orientations of the magnetic moments in Ising spin based magnetically frustrated pyrochlores. Diffuse scattering in electron diffraction patterns shows that the displacements are only short range ordered, indicative of geometric frustration of the collective dielectric state of the materials. Comparison to the crystal structure of the Nb5+ (d0) pyrochlore La2ScNbO7 supports the prediction that charge singlets, driven by the tendency of Nb to form metal-metal bonds, are present in these pyrochlores. The observed lack of long-range order to these singlets suggests that Nb4+-based pyrochlores represent the dielectric analogy to the geometric frustration of magnetic moments observed in rare earth pyrochlores.
We report experimental and theoretical evidence that Rb$_2$Cu$_2$Mo$_3$O$_{12}$ has a nonmagnetic tetramer ground state of a two-leg ladder comprising antiferromagnetically coupled frustrated spin-$1/2$ chains and exhibits a Haldane spin gap of emerg
The rich phase diagrams of magnetically frustrated pyrochlores have maintained a high level of interest over the past 20 years. To experimentally explore these phase diagrams requires a means of tuning the relevant interactions. One approach to achie
Li2SrNb2O7 (LSNO) crystallizes in a structure closely related to n = 2 Ruddlesden-Popper-type compounds, which is gen-erally formed by intergrowth of 2-dimensional perovskite-type blocks and rocksalt-type layers. The present study demonstrates a coex
The idea of magnetic monopoles in spin ice has enjoyed much success at intermediate temperatures, but at low temperatures a description in terms of monopole dynamics alone is insufficient. Recently, numerical simulations were used to argue that magne
The ytterbium pyrochlore magnets, Yb2B2O7 (B = Sn, Ti, Ge) are well described by S_eff = 1/2 quantum spins decorating a network of corner-sharing tetrahedra and interacting via anisotropic exchange. Structurally, only the non-magnetic B-site cation,