ﻻ يوجد ملخص باللغة العربية
The idea of magnetic monopoles in spin ice has enjoyed much success at intermediate temperatures, but at low temperatures a description in terms of monopole dynamics alone is insufficient. Recently, numerical simulations were used to argue that magnetic impurities account for this discrepancy by introducing a magnetic equivalent of residual resistance in the system. Here we propose that oxygen deficiency is the leading cause of magnetic impurities in as-grown samples, and we determine the defect structure and magnetism in Y2Ti2O(7-delta) using diffuse neutron scattering and magnetization measurements. These defects are eliminated by oxygen annealing. The introduction of oxygen vacancies causes Ti4+ to transform to magnetic Ti3+ with quenched orbital magnetism, but the concentration is anomalously low. In the spin-ice material Dy2Ti2O7 we find that the same oxygen-vacancy defects suppress moments on neighbouring rare-earth sites, and that these magnetic distortions dramatically slow down the long-time monopole dynamics at sub-Kelvin temperatures.
Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillat
Oxygen vacancies play a crucial role in the control of the electronic, magnetic, ionic, and transport properties of functional oxide perovskites. Rare earth nickelates (RENiO$_{3-x}$) have emerged over the years as a rich platform to study the interp
SrTiO$_3$ (STO) is the substrate of choice to grow oxide thin-films and oxide heterojunctions, which can form quasi-two-dimensional electronic phases that exhibit a wealth of phenomena, and, thus, a workhorse in the emerging field of metal-oxide elec
While defects such as oxygen vacancies in correlated materials can modify their electronic properties dramatically, understanding the microscopic origin of electronic correlations in materials with defects has been elusive. Lanthanum nickelate with o
Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO$_2$, known as Magneli phases. These Ti$_n$O$_{2n-1}$ M