ترغب بنشر مسار تعليمي؟ اضغط هنا

2DPHOT: A Multi-purpose Environment for the Two-dimensional Analysis of Wide-field Images

429   0   0.0 ( 0 )
 نشر من قبل Roy Gal
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe 2DPHOT, a general purpose analysis environment for source detection and analysis in deep wide-field images. 2DPHOT is an automated tool to obtain both integrated and surface photometry of galaxies in an image, to perform reliable star-galaxy separation with accurate estimates of contamination at faint flux levels, and to estimate completeness of the image catalog. We describe the analysis strategy on which 2DPHOT is based, and provide a detailed description of the different algorithms implemented in the package. This new environment is intended as a dedicated tool to process the wealth of data from wide-field imaging surveys. To this end, the package is complemented by 2DGUI, an environment that allows multiple processing of data using a range of computing architectures.

قيم البحث

اقرأ أيضاً

We present a convenient, all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data. The GIST pipeline (Galaxy IFU Spectroscopy Tool) is entirely written in Python3 and conducts all steps from the preparati on of input data, over the scientific analysis to the production of publication-quality plots. In its basic setup, it extracts stellar kinematics, performs an emission-line analysis and derives stellar population properties from full spectral fitting as well as via the measurement of absorption line-strength indices by exploiting the well-known pPXF and GandALF routines, where the latter has now been implemented in Python. The pipeline is not specific to any instrument or analysis technique and provides easy means of modification and further development, as of its modular code architecture. An elaborate, Python-native parallelisation is implemented and tested on various machines. The software further features a dedicated visualization routine with a sophisticated graphical user interface. This allows an easy, fully-interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models. The pipeline has successfully been applied to both low and high-redshift data from MUSE, PPAK (CALIFA), and SINFONI, as well as to simulated data for HARMONI@ELT and WEAVE and is currently being used by the TIMER, Fornax3D, and PHANGS collaborations. We demonstrate its capabilities by applying it to MUSE TIMER observations of NGC 1433.
Learning binary representations of instances and classes is a classical problem with several high potential applications. In modern settings, the compression of high-dimensional neural representations to low-dimensional binary codes is a challenging task and often require large bit-codes to be accurate. In this work, we propose a novel method for Learning Low-dimensional binary Codes (LLC) for instances as well as classes. Our method does not require any side-information, like annotated attributes or label meta-data, and learns extremely low-dimensional binary codes (~20 bits for ImageNet-1K). The learnt codes are super-efficient while still ensuring nearly optimal classification accuracy for ResNet50 on ImageNet-1K. We demonstrate that the learnt codes capture intrinsically important features in the data, by discovering an intuitive taxonomy over classes. We further quantitatively measure the quality of our codes by applying it to the efficient image retrieval as well as out-of-distribution (OOD) detection problems. For ImageNet-100 retrieval problem, our learnt binary codes outperform 16 bit HashNet using only 10 bits and also are as accurate as 10 dimensional real representations. Finally, our learnt binary codes can perform OOD detection, out-of-the-box, as accurately as a baseline that needs ~3000 samples to tune its threshold, while we require none. Code and pre-trained models are available at https://github.com/RAIVNLab/LLC.
Adopted by government agencies in Australia, New Zealand and the UK as policy instrument or as embodied into legislation, the Five Safes framework aims to manage risks of releasing data derived from personal information. Despite its popularity, the F ive Safes has undergone little legal or technical critical analysis. We argue that the Fives Safes is fundamentally flawed: from being disconnected from existing legal protections and appropriation of notions of safety without providing any means to prefer strong technical measures, to viewing disclosure risk as static through time and not requiring repeat assessment. The Five Safes provides little confidence that resulting data sharing is performed using safety best practice or for purposes in service of public interest.
98 - Marc Balcells 2010
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
While the dynamics for three-dimensional axially symmetric two-electron quantum dots with parabolic confinement potentials is in general non-separable we have found an exact separability with three quantum numbers for specific values of the magnetic field. Furthermore, it is shown that the magnetic properties such as the magnetic moment and the susceptibility are sensitive to the presence and strength of a vertical confinement. Using a semiclassical approach the calculation of the eigenvalues reduces to simple quadratures providing a transparent and almost analytical quantization of the quantum dot energy levels which differ from the exact energies only by a few percent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا