ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy equilibriation processes of electrons, magnons and phonons on the femtosecond timescale

63   0   0.0 ( 0 )
 نشر من قبل Jakob Walowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of time-resolved Kerr spectroscopy experiments we relate the energy dissipation processes on the femtosecond (electron-spin relaxation time $tau_{el-sp}$) and nanosecond timescale (Gilbert relaxation $tau_{alpha}$) and compare the results to the first microscopic model, which was proposed by Koopmans. For both energy dissipation processes, Elliot-Yafet scattering is proposed as the dominant contributor. We controllably manipulate the energy dissipation processes by transition metal doping (Pd) and rare earth doping (Dy) of a Permalloy film and find that while a change of $tau_{alpha}$ of more than a factor two is observed, tau_{el-sp}$ remains constant, contrary to the predictions of the model. We explain the discrepancies by relaxation channels not considered in the original microscopic model and identify thereby the applicability of the model and possible necessary extensions to the model.

قيم البحث

اقرأ أيضاً

The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$ _3$ closely resembles that of similar Fe perovskites, such as LaFeO$_3$, despite the cycloid modulation in BiFeO$_3$. We do not find any evidence for a spin gap. A strong $T$-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large-amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
81 - Marco Bernardi 2016
First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focus ing on perturbative treatments of scattering, dynamics and transport of coupled electrons and phonons. We discuss application of these first-principles calculations to electronics, lighting, spectroscopy and renewable energy.
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On coo ling, we observed phonon splitting accompanying the structural phase transition at Tc = 450K as well as the onset of the incommensurately modulated structure at 250 K. In the two antiferromagnetic phases below T_N1 = 90K and T_N2 = 48 K, several infrared-active excitations emerge in the meV range; their frequencies correspond to the maxima in the magnon density of states obtained by INS. At the magnetic phase transitions, these modes display strong anomalies and for some of them, a transfer of dielectric strength from the higher-frequency phonons is observed. We propose that these modes are electromagnons. Remarkably, at least two of these modes remain active also in the paramagnetic phase; for this reason, we call them paraelectromagnons. In accordance with this observation, quasielastic neutron scattering revealed short-range magnetic correlations persisting within temperatures up to 500K above T_N1.
311 - Yi Li , Chenbo Zhao , Wei Zhang 2021
The interaction between magnetic and acoustic excitations have recently inspired many interdisciplinary studies ranging from fundamental physics to circuit implementation. Specifically, the exploration of their coherent interconversion enabled via th e magnetoelastic coupling opens a new playground combining straintronics and spintronics, and provides a unique platform for building up on-chip coherent information processing networks with miniaturized magnonic and acoustic devices. In this Perspective, we will focus on the recent progress of magnon-phonon coupled dynamic systems, including materials, circuits, imaging and new physics. In particular, we highlight the unique features such as nonreciprocal acoustic wave propagation and strong coupling between magnons and phonons in magnetic thin-film systems, which provides a unique platform for their coherent manipulation and transduction. We will also review the frontier of surface acoustic wave resonators in coherent quantum transduction and discuss how the novel acoustic circuit design can be applied in microwave spintronics.
65 - Jie Li , Shi-Yao Zhu , 2018
We show how to create quantum squeezed states of magnons and phonons in a cavity magnomechanical system. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and couple to cavity microwave photons a nd phonons (vibrational modes of the ferrimagnet) via the magnetic dipole interaction and magnetostrictive interaction, respectively. The cavity is driven by a weak squeezed vacuum field generated by a flux-driven Josephson parametric amplifier, which is essential to get squeezed states of the magnons and phonons. We show that the magnons can be prepared in a squeezed state via the cavity-magnon beamsplitter interaction, and by further driving the magnon mode with a strong red-detuned microwave field, the phonons are squeezed. We show optimal parameter regimes for obtaining large squeezing of the magnons and phonons, which are robust against temperature and could be realized with experimentally reachable parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا