In this paper, we generalize the Shirshovs Composition Lemma by replacing the monomial order for others. By using Groebner-Shirshov bases, the normal forms of HNN extension of a group and the alternating group are obtained.
We found Groebner-Shirshov basis for the braid semigroup $B^+_{n+1}$. It gives a new algorithm for the solution of the word problem for the braid semigroup and so for the braid group.
In this paper, we give a Groebner-Shirshov basis of the braid group $B_{n+1}$ in the Artin--Garside generators. As results, we obtain a new algorithm for getting the Garside normal form, and a new proof that the braid semigroup $B^+{n+1}$ is the subsemigroup in $B_{n+1}$.
In this paper, we obtain Groebner-Shirshov (non-commutative Grobner) bases for the braid groups in the Birman-Ko-Lee generators enriched by new ``Garside word $delta$. It gives a new algorithm for getting the Birman-Ko-Lee Normal Form in the braid gr
oups, and thus a new algorithm for solving the word problem in these groups.
In this paper, we prove that two-generator one-relator groups with depth less than or equal to 3 can be effectively embedded into a tower of HNN-extensions in which each group has the effective standard normal form. We give an example to show how to
deal with some general cases for one-relator groups. By using the Magnus method and Composition-Diamond Lemma, we reprove the G. Higman, B. H. Neumann and H. Neumanns embedding theorem.