ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of XUV-absorption spectra of ZnS radiatively heated foils

581   0   0.0 ( 0 )
 نشر من قبل Michel Poirier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range has been measured. Thin foils in conditions close to local thermodynamic equilibrium were heated by radiation from laser-irradiated gold spherical cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based on the detailed atomic calculations of its absorption spectra, showed that the cavity emitted flux that heated the absorption foils corresponds to a radiation temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra with calculations based on a superconfiguration approach identified the presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the radiative source simulations, experimental spectra were then compared to calculations performed by post-processing the radiative hydrodynamic simulations of ZnS. Satisfying agreement is found when temperature gradients are accounted for.



قيم البحث

اقرأ أيضاً

102 - W. R. Johnson , J. Nilsen 2018
Standard measures of opacity, the imaginary part of the atomic scattering factor $f_2$ and the x-ray mass attenuation coefficient $mu/rho$, are evaluated in shock-heated boron, boron carbide and boron nitride plasmas. The Hugoniot equation, relating the temperature $T$ behind a shock wave to the compression ratio $rho/rho_0$ across the shock front, is used in connection with the plasma equation of state to determine the pressure $p$, effective plasma charge $Z^ast$ and the K-shell occupation in terms of $rho/rho_0$. Solutions of the Hugoniot equation (determined within the framework of the generalized Thomas-Fermi theory) reveal that the K-shell occupation in low-Z ions decreases rapidly from 2 to 0.1 as the temperature increases from 20eV to 500eV; a temperature range in which the shock compression ratio is near 4. The average-atom model (a quantum mechanical version of the generalized Thomas-Fermi theory) is used to determine K-shell and continuum wave functions and the photoionization cross section for x-rays in the energy range $omega=1$eV to 10keV, where the opacity is dominated by the atomic photoionization process. For an uncompressed boron plasma at $T=10$eV, where the K-shell is filled, the average-atom cross section, the atomic scattering factor and the mass attenuation coefficient are all shown to agree closely with previous (cold matter) tabulations. For shock-compressed plasmas, the dependence of the $mu/rho$ on temperature can be approximated by scaling previously tabulated cold-matter values by the relative K-shell occupation, however, there is a relatively small residual dependence arising from the photoionization cross section. Attenuation coefficients $mu$ for a 9 keV x-ray are given as functions of $T$ along the Hugoniot for B, C, B$_4$C and BN plasmas.
The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and th ere is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter.
118 - J.H. Bin , W.J. Ma , K. Allinger 2013
We report on experimental studies of divergence of proton beams from nanometer thick diamond-like carbon (DLC) foils irradiated by an intense laser with high contrast. Proton beams with extremely small divergence (half angle) of 2 degree are observed in addition with a remarkably well-collimated feature over the whole energy range, showing one order of magnitude reduction of the divergence angle in comparison to the results from micrometer thick targets. We demonstrate that this reduction arises from a steep longitudinal electron density gradient and an exponentially decaying transverse profile at the rear side of the ultrathin foils. Agreements are found both in an analytical model and in particle-in-cell simulations. Those novel features make nm foils an attractive alternative for high flux experiments relevant for fundamental research in nuclear and warm dense matter physics.
Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on lo w-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.
295 - X. F. Shen , B. Qiao , H. He 2018
Scaling laws of ion acceleration in ultrathin foils driven by radiation pressure of intense laser pulses are investigated by theoretical analysis and two-dimensional particle-in-cell simulations. Considering the instabilities are inevitable during la ser plasma interaction, the maximum energy of ions should have two contributions: the bulk acceleration driven by radiation pressure and the sheath acceleration in the moving foil reference induced by hot electrons. A theoretical model is proposed to quantitatively explain the results that the cutoff energy and energy spread are larger than the predictions of light sail model, observed in simulations and experiments for a large range of laser and target parameters. Scaling laws derived from this model and supported by the simulation results are verified by the previous experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا