ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium

412   0   0.0 ( 0 )
 نشر من قبل Sam Vinko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter.



قيم البحث

اقرأ أيضاً

Warm dense matter (WDM) -- an exotic state of highly compressed matter -- has attracted high interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This i s due to the simultaneous appearance of quantum degeneracy, Coulomb correlations and thermal effects, as well as the overlap of plasma and condensed phases. Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first textit{ab initio} data for the exchange-correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations, for recent reviews, see Dornheim textit{et al.}, Phys. Plasmas textbf{24}, 056303 (2017) and Phys. Rep. textbf{744}, 1-86 (2018). In the present article we review recent further progress in QMC simulations of the warm dense UEG: namely, textit{ab initio} results for the static local field correction $G(q)$ and for the dynamic structure factor $S(q,omega)$. These data are of key relevance for the comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper we discuss simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT and hydrodynamics. Here we analyze strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and we concentrate on problems, recent progress, and possible improvements of this method.
We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare wit h available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool to study dynamical processes in warm dense matter beyond the Born-Oppenheimer approximation. These techniques, typically, employ many approx imations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigate three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examine each of these approximations in atomic and molecular hydrogen in addition to a dense hydrogen plasma. We find that the biggest improvement to WPMD comes from combining a two Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we find that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.
Adaptive filtering is a powerful class of control theoretic concepts useful in extracting information from noisy data sets or performing forward prediction in time for a dynamic system. The broad utilization of the associated algorithms makes them at tractive targets for similar problems in the quantum domain. To date, however, the construction of adaptive filters for quantum systems has typically been carried out in terms of stochastic differential equations for weak, continuous quantum measurements, as used in linear quantum systems such as optical cavities. Discretized measurement models are not as easily treated in this framework, but are frequently employed in quantum information systems leveraging projective measurements. This paper presents a detailed analysis of several technical innovations that enable classical filtering of discrete projective measurements, useful for adaptively learning system-dynamics, noise properties, or hardware performance variations in classically correlated measurement data from quantum devices. In previous work we studied a specific case of this framework, in which noise and calibration errors on qubit arrays could be efficiently characterized in space; here, we present a generalized analysis of filtering in quantum systems and demonstrate that the traditional convergence properties of nonlinear classical filtering hold using single-shot projective measurements. These results are important early demonstrations indicating that a range of concepts and techniques from classical nonlinear filtering theory may be applied to the characterization of quantum systems involving discretized projective measurements, paving the way for broader adoption of control theoretic techniques in quantum technology.
The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictiv e calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of x-ray to ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, and find good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا