ﻻ يوجد ملخص باللغة العربية
We explore a possible origin for the puzzling anti-correlation between the formation epoch of galactic dark-matter haloes and their environment density. This correlation has been revealed from cosmological N-body simulations and is in conflict with the Extended Press-Schechter model of halo clustering. Using similar simulations, we first quantify the straightforward association of an early formation epoch with a reduced mass growth rate at late times. We then find that a primary driver of suppressed growth, by accretion and mergers, is tidal effects dominated by a neighbouring massive halo. The tidal effects range from a slowdown of the assembly of haloes due to the shear along the large-scale filaments that feed the massive halo to actual mass loss in haloes that pass through the massive halo. Using the restricted three-body problem, we show that haloes are prone to tidal mass loss within 1.5 virial radii of a larger halo. Our results suggest that the dependence of formation epoch on environment density is a secondary effect induced by the enhanced density of haloes in filaments near massive haloes where the tides are strong. Our measures of assembly rate are particularly correlated with the tidal field at high redshifts z~1.
The two-point clustering of dark matter halos is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, $V_{rm max}$, as our secondary halo property, in this pa
One of the main predictions of excursion set theory is that the clustering of dark matter haloes only depends on halo mass. However, it has been long established that the clustering of haloes also depends on other properties, including formation time
Using dark matter haloes identified in a large $N$-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass int
The simplest analyses of halo bias assume that halo mass alone determines halo clustering. However, if the large scale environment is fixed, then halo clustering is almost entirely determined by environment, and is almost completely independent of ha
I present results from numerical N-body simulations regarding the effect of merging events on the angular momentum distribution of galactic halos as well as a comparison of halo growth in Press-Schechter vs. N-body methods. A total of six simulations