ترغب بنشر مسار تعليمي؟ اضغط هنا

Probes of Gravitational Waves with Atom Interferometers

156   0   0.0 ( 0 )
 نشر من قبل Ville Vaskonen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atom interferometers (AIs) on earth and in space offer good capabilities for measuring gravitational waves (GWs) in the mid-frequency deciHz band, complementing the sensitivities of the LIGO/Virgo and LISA experiments and enabling probes of possible modifications of the general relativity predictions for GW propagation. We illustrate these capabilities using the projected sensitivities of the AION (terrestrial) and AEDGE (space-based) AI projects, showing that AION could improve the present LIGO/Virgo direct limit on the graviton mass by a factor $sim 40$ to $simeq 10^{-24},$eV, and AEDGE could improve the limit by another order of magnitude. AION and AEDGE will also have greater sensitivity than LIGO to some scenarios for Lorentz violation.

قيم البحث

اقرأ أيضاً

We survey the prospective sensitivities of terrestrial and space-borne atom interferometers (AIs) to gravitat- ional waves (GWs) generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravi tational gradient noise (GGN) in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space- borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100m and 1km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter.
From the principle of equivalence, Einstein predicted that clocks slow down in a gravitational field. Since the general theory of relativity is based on the principle of equivalence, it is essential to test this prediction accurately. Muller, Peters and Chu claim that a reinterpretation of decade old experiments with atom interferometers leads to a sensitive test of this gravitational redshift effect at the Compton frequency. Wolf et al dispute this claim and adduce arguments against it. In this article, we distill these arguments to a single fundamental objection: an atom is NOT a clock ticking at the Compton frequency. We conclude that atom interferometry experiments conducted to date do not yield such sensitive tests of the gravitational redshift. Finally, we suggest a new interferometric experiment to measure the gravitational redshift, which realises a quantum version of the classical clock paradox.
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noi se of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational w ave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.
A novel method for extending frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton-magnon detector which measures resonance f luorescence of magnons. Searching for gravitational waves with a wave length $lambda$ by using a ferromagnetic sample with a dimension $l$, the sensitivity of the graviton-magnon detector reaches spectral densities, around $5.4 times 10^{-22} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 14 GHz and $8.6 times 10^{-21} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 8.2 GHz, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا