ﻻ يوجد ملخص باللغة العربية
We present a new approach to cyclic homology that does not involve the Connes differential and is based on a `noncommutative equivariant de Rham complex of an associative algebra. The differential in that complex is a sum of the Karoubi-de Rham differential, which replaces the Connes differential, and another operation analogous to contraction with a vector field. As a byproduct, we give a simple explicit construction of the Gauss-Manin connection, introduced earlier by E. Getzler, on the relative cyclic homology of a flat family of associative algebras over a central base ring. We introduce and study `free-product deformations of an associative algebra, a new type of deformation over a not necessarily commutative base ring. Natural examples of free-product deformations arise from preprojective algebras and group algebras for compact surface groups.
Based on the ideas of Cuntz and Quillen, we give a simple construction of cyclic homology of unital algebras in terms of the noncommutative de Rham complex and a certain differential similar to the equivariant de Rham differential. We describe the Co
After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads.
We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of th
We describe a construction of the cyclotomic structure on topological Hochschild homology ($THH$) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spect
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the f