ترغب بنشر مسار تعليمي؟ اضغط هنا

Free products, cyclic homology, and the Gauss-Manin connection

214   0   0.0 ( 0 )
 نشر من قبل Travis Schedler
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new approach to cyclic homology that does not involve the Connes differential and is based on a `noncommutative equivariant de Rham complex of an associative algebra. The differential in that complex is a sum of the Karoubi-de Rham differential, which replaces the Connes differential, and another operation analogous to contraction with a vector field. As a byproduct, we give a simple explicit construction of the Gauss-Manin connection, introduced earlier by E. Getzler, on the relative cyclic homology of a flat family of associative algebras over a central base ring. We introduce and study `free-product deformations of an associative algebra, a new type of deformation over a not necessarily commutative base ring. Natural examples of free-product deformations arise from preprojective algebras and group algebras for compact surface groups.



قيم البحث

اقرأ أيضاً

Based on the ideas of Cuntz and Quillen, we give a simple construction of cyclic homology of unital algebras in terms of the noncommutative de Rham complex and a certain differential similar to the equivariant de Rham differential. We describe the Co nnes exact sequence in this setting. We define equivariant Deligne cohomology and construct, for each n > 0, a natural map from cyclic homology of an algebra to the GL_n-equivariant Deligne cohomology of the variety of n-dimensional representations of that algebra. The bridge between cyclic homology and equivariant Deligne cohomology is provided by extended cyclic homology, which we define and compute here, based on the extended noncommutative de Rham complex introduced previously by the authors.
After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads.
We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of th e strata of fixed points. These groups identify our cyclic homology groups with the dlp orbifold cohomologydrp of the underlying (algebraic) orbifold. The proof is based on a careful study of localization at fixed points and of the resulting Koszul complexes. We provide examples of Azumaya algebras for which this identification is, however, no longer valid. As an example, we discuss some affine Weyl groups.
We describe a construction of the cyclotomic structure on topological Hochschild homology ($THH$) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spect ra, avoiding use of the Bokstedt coherence machinery. We are able to defi
360 - Jack M. Shapiro 2014
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the f inite cyclic group generated by $g$ and $|G|=r$ is invertible in $k,$ then $HC_*(A rtimes G)$ will be isomorphic to a direct sum of $r$ copies of $HC_*^g(A).$ For the case where $|G|$ is finite and $Q subset k$ we will generalize the Karoubi and Connes periodicity exact sequences for $HC_*^g(A)$ to Karoubi and Connes periodicity exact sequences for $HC_*(A rtimes G)$ .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا