ﻻ يوجد ملخص باللغة العربية
This survey paper examines the effective model theory obtained with the BSS model of real number computation. It treats the following topics: computable ordinals, satisfaction of computable infinitary formulas, forcing as a construction technique, effective categoricity, effective topology, and relations with other models for the effective theory of uncountable structures.
In this note we study and obtain factorization theorems for colorings of matrices and Grassmannians over $mathbb{R}$ and ${mathbb{C}}$, which can be considered metr
Descriptive set theory was originally developed on Polish spaces. It was later extended to $omega$-continuous domains [Selivanov 2004] and recently to quasi-Polish spaces [de Brecht 2013]. All these spaces are countably-based. Extending descriptive s
In this paper, we investigate connections between structures present in every generic extension of the universe $V$ and computability theory. We introduce the notion of {em generic Muchnik reducibility} that can be used to to compare the complexity o
We study some closed rigid subspaces of the eigenvarieties, constructed by using the Jacquet-Emerton functor for parabolic non-Borel subgroups. As an application (and motivation), we prove some new results on Breuils locally analytic socle conjecture for $mathrm{GL}_n(mathbb{Q}_p)$.
We begin to study classical dimension theory from the computable analysis (TTE) point of view. For computable metric spaces, several effectivisations of zero-dimensionality are shown to be equivalent. The part of this characterisation that concerns c