ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective zero-dimensionality for computable metric spaces

155   0   0.0 ( 0 )
 نشر من قبل Robert Kenny
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Robert Kenny




اسأل ChatGPT حول البحث

We begin to study classical dimension theory from the computable analysis (TTE) point of view. For computable metric spaces, several effectivisations of zero-dimensionality are shown to be equivalent. The part of this characterisation that concerns covering dimension extends to higher dimensions and to closed shrinkings of finite open covers. To deal with zero-dimensional subspaces uniformly, four operations (relative to the space and a class of subspaces) are defined; these correspond to definitions of inductive and covering dimensions and a countable basis condition. Finally, an effective retract characterisation of zero-dimensionality is proven under an effective compactness condition. In one direction this uses a version of the construction of bilocated sets.



قيم البحث

اقرأ أيضاً

We investigate computable metrizability of Polish spaces up to homeomorphism. In this paper we focus on Stone spaces. We use Stone duality to construct the first known example of a computable topological Polish space not homeomorphic to any computabl y metrized space. In fact, in our proof we construct a right-c.e. metrized Stone space which is not homeomorphic to any computably metrized space. Then we introduce a new notion of effective categoricity for effectively compact spaces and prove that effectively categorical Stone spaces are exactly the duals of computably categorical Boolean algebras. Finally, we prove that, for a Stone space $X$, the Banach space $C(X;mathbb{R})$ has a computable presentation if, and only if, $X$ is homeomorphic to a computably metrized space. This gives an unexpected positive partial answer to a question recently posed by McNicholl.
148 - Andrej Bauer , Andrew Swan 2018
We first show that in the function realizability topos every metric space is separable, and every object with decidable equality is countable. More generally, working with synthetic topology, every $T_0$-space is separable and every discrete space is countable. It follows that intuitionistic logic does not show the existence of a non-separable metric space, or an uncountable set with decidable equality, even if we assume principles that are validated by function realizability, such as Dependent and Function choice, Markovs principle, and Brouwers continuity and fan principles.
69 - Olivier Finkel 2018
We prove that $omega$-regular languages accepted by Buchi or Muller automata satisfy an effective automata-theoretic version of the Baire property. Then we use this result to obtain a new effective property of rational functions over infinite words w hich are realized by finite state Buchi transducers: for each such function $F: Sigma^omega rightarrow Gamma^omega$, one can construct a deterministic Buchi automaton $mathcal{A}$ accepting a dense ${bf Pi}^0_2$-subset of $Sigma^omega$ such that the restriction of $F$ to $L(mathcal{A})$ is continuous.
98 - Mathieu Hoyrup 2017
Descriptive set theory was originally developed on Polish spaces. It was later extended to $omega$-continuous domains [Selivanov 2004] and recently to quasi-Polish spaces [de Brecht 2013]. All these spaces are countably-based. Extending descriptive s et theory and its effective counterpart to general represented spaces, including non-countably-based spaces has been started in [Pauly, de Brecht 2015]. We study the spaces $mathcal{O}(mathbb{N}^mathbb{N})$, $mathcal{C}(mathbb{N}^mathbb{N},2)$ and the Kleene-Kreisel spaces $mathbb{N}langlealpharangle$. We show that there is a $Sigma^0_2$-subset of $mathcal{O}(mathbb{N}^mathbb{N})$ which is not Borel. We show that the open subsets of $mathbb{N}^{mathbb{N}^mathbb{N}}$ cannot be continuously indexed by elements of $mathbb{N}^mathbb{N}$ or even $mathbb{N}^{mathbb{N}^mathbb{N}}$, and more generally that the open subsets of $mathbb{N}langlealpharangle$ cannot be continuously indexed by elements of $mathbb{N}langlealpharangle$. We also derive effecti
For a commutative quantale $mathcal{V}$, the category $mathcal{V}-cat$ can be perceived as a category of generalised metric spaces and non-expanding maps. We show that any type constructor $T$ (formalised as an endofunctor on sets) can be extended in a canonical way to a type constructor $T_{mathcal{V}}$ on $mathcal{V}-cat$. The proof yields methods of explicitly calculating the extension in concrete examples, which cover well-known notions such as the Pompeiu-Hausdorff metric as well as new ones. Conceptually, this allows us to to solve the same recursive domain equation $Xcong TX$ in different categories (such as sets and metric spaces) and we study how their solutions (that is, the final coalgebras) are related via change of base. Mathematically, the heart of the matter is to show that, for any commutative quantale $mathcal{V}$, the `discrete functor $D:mathsf{Set}to mathcal{V}-cat$ from sets to categories enriched over $mathcal{V}$ is $mathcal{V}-cat$-dense and has a density presentation that allows us to compute left-Kan extensions along $D$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا