ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustness and Infrared Sensitivity of Various Observables in the Application of AdS/CFT to Heavy Ion Collisions

202   0   0.0 ( 0 )
 نشر من قبل Krishna Rajagopal
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the robustness with respect to nonconformality of five properties of strongly coupled plasmas that have been calculated in N=4 supersymmetric Yang-Mills (SYM) theory at nonzero temperature, motivated by the goal of understanding phenomena in heavy ion collisions. (The properties are the jet quenching parameter, the velocity dependence of screening, and the drag and transverse and longitudinal momentum diffusion coefficients for a heavy quark pulled through the plasma.) We use a toy model in which nonconformality is introduced via a one-parameter deformation of the AdS black hole dual to the hot N=4 SYM plasma. Upon introducing a degree of nonconformality comparable to that seen in lattice calculations of QCD at temperatures a few times that of the crossover to quark-gluon plasma, we find that the jet quenching parameter is affected by the nonconformality by at most 30%, the screening length is affected by at most 20%, but the drag and diffusion coefficients for a slowly moving heavy quark can be modified by as much as 80%. However, four of the five properties that we investigate become completely insensitive to the nonconformality in the limit v -> 1. The exception is the jet quenching parameter, which is infrared sensitive even at v=1, where it is defined. It is the only high-velocity observable that we investigate which is sensitive to properties of the medium at infrared energy scales proportional to T, namely the scales where the quark-gluon plasma of QCD can be strongly coupled. The other four quantities all probe only scales that are larger than T by a factor that diverges as v -> 1, namely scales where the N=4 SYM plasma can be strongly coupled but the quark-gluon plasma of QCD is not.



قيم البحث

اقرأ أيضاً

369 - Jian-Hua Gao 2021
We discuss the helicity polarization which can be locally induced from both vorticity and helicity charge in non-central heavy ion collisions. Helicity charge redistribution can be generated in viscous fluid and contributes to azimuthal asymmetry of the polarization along global angular momentum or beam momentum. We also discuss on detecting the initial net helicity charge from topological charge fluctuation or initial color longitudinal field by the helicity polarization correlation of two hyperons and the helicity alignment of vector mesons in central heavy ion collisions.
320 - Yizhuang Liu , Ismail Zahed 2018
The eikonalized parton-parton scattering amplitude at large $sqrt{s}$ and large impact parameter, is dominated by the exchange of a hyperbolic surface in walled AdS. Its analytical continuation yields a worldsheet instanton that is at the origin of t he Reggeization of the amplitude and a thermal-like quantum entropy ${cal S}_T$. We explicitly construct the entangled density matrix following from the exchanged surface, and show that its von-Neumann entanglement entropy ${cal S}_E$ coincides with the thermal-like entropy, i.e. ${cal S}_T={cal S}_E$. The ratio of the entanglement entropy to the transverse growth of the exchanged surface is similar to the Bekenstein entropy ratio for a black-hole, with a natural definition of saturation and the on-set of chaos in high energy collisions. The largest eigenvalues of the entangled density matrix obey a cascade equation in rapidity, reminiscent of non-linear QCD evolution of wee-dipoles at low-x and weak coupling. We suggest that the largest eigenvalues describe the probability distributions of wee-quanta at low-x and strong coupling that maybe measurable at present and future pp and ep colliders.
We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the soft drop declustering procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.
Studies of fully-reconstructed jets in heavy-ion collisions aim at extracting thermodynamical and transport properties of hot and dense QCD matter. Recently, a plethora of new jet substructure observables have been theoretically and experimentally de veloped that provide novel precise insights on the modifications of the parton radiation pattern induced by a QCD medium. This report, summarizing the main lines of discussion at the 5th Heavy Ion Jet Workshop and CERN TH institute Novel tools and observables for jet physics in heavy-ion collisions in 2017, presents a first attempt at outlining a strategy for isolating and identifying the relevant physical processes that are responsible for the observed medium-induced jet modifications. These studies combine theory insights, based on the Lund parton splitting map, with sophisticated jet reconstruction techniques, including grooming and background subtraction algorithms.
153 - Varun Vaidya 2020
I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an illustration, I consider dijet events that accompany the formation of a weakly coupled Quark Gluon Plasma(QGP) medi um in a heavy ion collision and look at an observable insensitive to jet selection bias: the simultaneous measurement of jet mass along with the transverse momentum imbalance between the jets that are groomed to remove soft radiation. Treating the jet as an open quantum system, I write down a factorization formula within the SCET(Soft Collinear Effective Theory) framework in the forward scattering regime. The physics of the medium is encoded in a universal soft field correlator while the jet-medium interaction is captured by a medium induced jet function. The factorization formula leads to a Lindblad type equation for the evolution of the reduced density matrix of the jet in the Markovian approximation. The solution for this equation allows a resummation of large logarithms that arise due to the final state measurements imposed while simultaneously summing over multiple incoherent interactions of the jet with the medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا